5. Ton und Klang

- 5.1 Ton: Physikalische und physiologische Aspekte
- 5.2 Kompression von Audio-Signalen: MPEG-Audio
- 5.3 Audio-Datenformate: Übersicht

5.4 Klangerzeugung und MIDI

Weiterführende Literatur:

Arne Heyda, Marc Briede, Ulrich Schmidt: Datenformate im Medienbereich, Fachbuchverlag Leipzig 2003

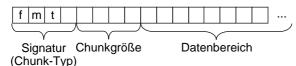
Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 56

RIFF (Resource Interchange File Format)

- IFF: 1985 von der Firma Electronic Arts eingeführt
 - Sehr einfaches Einheitsformat für verschiedene Arten von Multimedia-Daten, stark verbreitet auf AMIGA-Rechnern
 - Prinzip ("Tagged File Format"):
 - » Header gibt Dateityp an
 - » Eigentliche Daten in einer Folge von ebenfalls (über Header) typisierten chunks
- RIFF:
 - Bestandteil der "Multimedia Programming Interface and Data Specifications" von Microsoft und IBM, 1991
 - Basiert auf der Idee von IFF
 - Existiert prinzipiell in zwei Varianten:
 - » RIFF für Intel-Architektur ("little-endian")
 - » RIFX für Motorola-Architektur ("big-endian")


(RIFX heutzutage auch auf Motorola-Prozessoren ungebräuchlich)

Grundstruktur von RIFF-Dateien

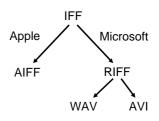
RIFF-Header (in Bytes):

Chunk-Header (in Bytes):

- Verbreitete RIFF-Datentypen (als eigenständige Dateiformate bekannt):
 - WAVE (oder .wav): Audio, unkomprimiert
 - AVI: Video (Audio/Video Interlaced), unkomprimiert
 - RMI: MIDI-Daten (sh. später)
 - BND: "Bündel" von RIFF-Dateien

Ludwig-Maximilians-Universität München

Prof. Hußmann


Digitale Medien - 6 - 58

Wave-Format

- Spezialfall des RIFF-Formats (RIFF-Typ "WAVE")
- · Zwei Arten von Chunks:
 - FMT-Chunk (Signatur "fmt ")
 - » Format-Typ (z.B. MS PCM, IBM ADPCM)
 - » Anzahl Kanäle
 - » Sampling-Rate (Hz)
 - » Datenrate (Bytes/s)
 - » Größe von Datenblöcken
 - » Formatspezifische Information (Z.B. bei MS PCM 2 Byte Sample-Größe (bits/Sample)
 - DATA-Chunk (Signatur "data"), meist nur ein solcher Chunk vorhanden
 - » Bei mehreren Kanälen "interleaving", d.h. alle Kanäle für einen Zeitpunkt in Folge

AIFF (Audio Interchange File Format)

- Herstellerspezifische Erweiterung von IFF durch Apple für unkomprimiertes Audio
 - Format-Chunk
 - Daten-Chunks, byteweise gepackt
- Audiodaten für bis zu 6 Kanäle (Surround Sound)
- Möglichkeit zur Einstreuung von MIDI-Chunks und Instrumenten-Chunks
- Spezialvariante AIFF-C für komprimierte Audiodaten (ca. 6:1)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 60

AU (Audio File Format)

- Bei NeXT entwickelt, weit verbreitet im UNIX-Bereich (z.B. Sun)
- Header:
 - Abtastrate, Kanalzahl, Datenformat etc.
 - beliebig lange Textinformation
- Datenbereich:
 - Kanäle miteinander verschränkt
 - Viele Datenformate, z.B.:
 - » von 8 bis 32 Bit
 - » μ-Law und linear
 - » Festkomma, Gleitkomma, doppelte Genauigkeit
- Unterstützung von Dateifragmentierung

QuickTime

- Bibliothek von systemnahen Programmen für MacOS und Windows für die Bearbeitung von zeitbasierten Medien ("movies")
 - Entwickelt von Apple ca. 1991-heute
- Sehr allgemeines Konzept für Medienstrukturen
 - "Atom": Allgemeiner Container für Mediendaten
 - Mehrere Tracks je Präsentation
 - Pro Track:
 - » Medienstruktur (Referenzen zu Medien verschiedenen Typs)
 - » "Edit List" für Zeitsynchronisation
- QuickTime wurde als Basis für die MPEG-4 Dateistruktur gewählt.
- Viele verschiedene Dateitypen von QuickTime unterstützt
 - Wichtiges spezifisches QuickTime-Format: "Movie" (MOV)

Ludwig-Maximilians-Universität München

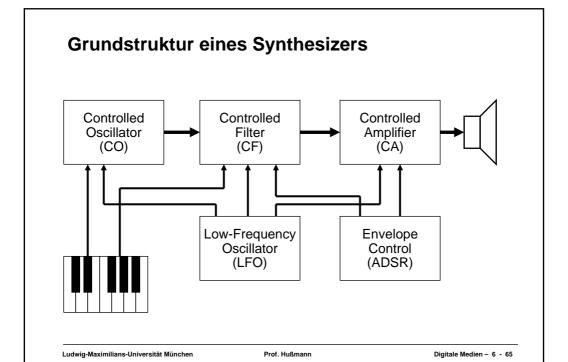
Prof. Hußmann

Digitale Medien - 6 - 62

5. Ton und Klang

- 5.1 Ton: Physikalische und physiologische Aspekte
- 5.2 Kompression von Audio-Signalen: MPEG-Audio
- 5.3 Audio-Datenformate: Übersicht
- 5.4 Klangerzeugung und MIDI

Literatur:


Hannes Raffaseder: Audiodesign, Fachbuchverlag Leipzig 2002

Klangerzeugung

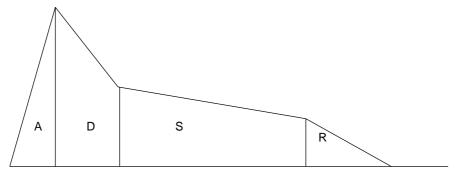
- Grundziel der Klangerzeugung:
 Erzeugung komplexer Klangereignisse mit elektronischen Mitteln
- Klänge für Musik oder Sprache können künstlich produziert werden
 - Tonhöhe, Lautstärke, Klangfarbe (timbre) einstellbar
- Klangerzeuger:
 - Einfache Klangerzeuger in Soundkarten enthalten (Frequenzmodulation einfacher Wellenformen)
 - Hochwertige Klangerzeuger z.B. in elektronischen Musikinstrumenten ("Synthesizer", MIDI-Keyboards)
 - » mehrstimmig (z.B. 128)
 - » multitimbral (d.h. verschiedene Klangfarben, z.B. 64)
- Historisch gesehen:
 - 1900 Dynamophone (Thaddeus Cahill), 1920 Termenvox (Lew Termen), 1930 Trautonioum (Friedrich Trautwein)
 - Seit Anfang der 60er Jahre (Robert Moog): Moderne Synthesizer-Architektur
 - Musikalischer Durchbruch: 1968 Walter Carlos "Switched-on Bach"

Ludwig-Maximilians-Universität München

Prof. Hußmann

Grundelemente bei der Klangerzeugung

- Oszillator
 - Erzeugt mehr oder weniger obertonreiches Signal, das die Grundfrequenz und auch wesentlich den Klangcharakter bestimmt
- Filter
 - Z.B. Hochpass, Tiefpass, Bandfilter
- Verstärker (Amplifier)
 - Kann über zeitabhängigen Pegelverlauf Klangempfindung wesentlich beeinflussen
- Hüllkurvengenerator (Envelope Control)
 - Zeitlicher Verlauf eines Klangereignisses auf ein einmaliges erzeugendes Ereignis hin (z.B. Tastendruck), meist ADSR (siehe nächste Folie)
- Low Frequency Oscillator LFO
 - Dient zur kontinuierlichen Veränderung eines klangbestimmenden Parameters innerhalb eines bestimmten Zeitintervalls
 - Frequenzen typischerweise zwischen 0 und 20 Hz


Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 66

ADSR-Modell

- · Modulation nach dem ADSR-Modell
 - Attack (A), Decay (D), Sustain (S), Release (R)
 - Höhe und Breite der vier Parameter variabel
 - Verbreitet: Einstellung der A-, D-, S- und R-Zeiten über Regler

Ludwig-Maximilians-Universität München

Prof. Hußmann

Verfahren zur Klangsynthese

- Additive Klangsynthese
 - Umsetzung der Fourier-Analyse in die Praxis
 - Realisierung eines Klangs als Überlagerung von Sinustönen
- · Subtraktive Klangsynthese
 - Erzeugung obertonreicher Grundsignale (z.B. Sägezahn, Dreieck, ...)
 - Steuerung der Spektren mit Filtern und der Amplitude mit Verstärkern
- Wavetable-Synthese
 - Vordefinierte, gespeicherte Wellenformen
 - Oszillator durchläuft Wavetable in programmierter Weise (z.B. LFO)
- Sampling
 - Wiedergabe digital aufgezeichneter akustischer Ereignisse
 - Multisampling: Viele Aufnahmen verschiedener Parameterwerte
- Granularsynthese
 - Zerlegung von Schallsignalen in *Grains* (wenige ms lange Abschnitte)
 - Entkopplung von Wiedergabegeschwindigkeit und Tonhöhe

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 68

Akustische Modellierung

- Modellierung eines Klangerzeugers (physikalisch-akustisch)
 - Vereinfachtes physikalisches Modell der Klangerzeugung
 - Auflösung zu Wellenform: endlich viele gekoppelte nichtlineare Differentialgleichungen
- Modellierung eines Raums (architektonisch-akustisch)
 - Modifikation von Audiodaten gemäß Akustik eines speziellen Raums
 - Bestimmung der Raumakustik vor Ort mit Impulsschall verschiedener Frequenzen
 - Faltung des Audiosignals mit Akustik
 - Sinnvoll auch in Gebäudeplanung und -optimierung

MIDI: Geschichte und Überblick

- Synthesizer: Revolutionäres Musikinstrument in den 70er Jahren
 - Beatles (White Album), Carlos (Switched-on Bach), ...
 - Technische Probleme:
 Polyphonie, Kombination verschiedener Geräte, Synchronisation
- 1983: Erste Interoperabilitäts-Vorführung
- MIDI (Musical Instrument Digital Interface) Standard
 - International MIDI Association (IMA)
 - MIDI Manufacturers Association (MMA)
- Bedeutung für Multimedia:
 - Standardisierte Sprache für
 - » Übernahme von Daten aus Endgeräten, die Musikinstrumenten entsprechen (insb. Keyboard)
 - » Ansteuerung von Peripheriegeräten (Synthesizer, Beleuchtung)
 - » Abstrahierte Darstellung von gespielter Musik

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 70

MIDI-Grundbegriffe

- Ereignis (event):
 - Musikalische Aktion, z.B. Musiker drückt Taste auf Keyboard mit bestimmter Anschlagsstärke (velocity)
 - » etwa: "NOTE ON C3 velocity 100"
 - Jedes Ereignis findet zu einem bestimmten Zeitpunkt statt (Zeitstempel)
- Nachricht (message):
 - Binäre Codierung der in einem Ereignis enthaltenen Information
 - Kann gespeichert, weitergegeben, vervielfältigt, modifiziert werden
- Befehl (command):
 - Anweisung an ein externes Gerät, bestimmte musikalische Aktionen auszuführen
- Klangfarbe (timbre):
 - Charakteristik eines bestimmten wiederzugebenden Instruments
 - "Multitimbral"
- Kanal (channel):
 - Identifikator f
 ür bestimmten Empfänger (traditionell 16 Kanäle)

Ludwig-Maximilians-Universität München

Prof. Hußmann

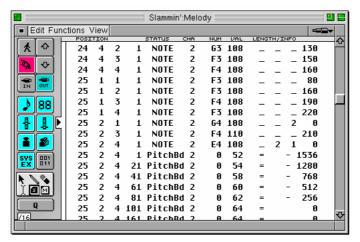
MIDI-Nachrichten

- Channel Voice Messages
 - Eigentliche Musikdaten (sh. nächste Folie)
- Channel Mode Messages
 - Steuerung des Synthesizers
 - » Ein-/Ausschalten der eigenen Tastatur (z.B. bei Keyboard/Synthesizer)
 - » Testmodus
 - » Polyphonie-Steuerung
- System Real-Time Messages
 - Synchronisationstakt
 - Synchronisierte Sequenzen
 - Überprüfung der Verfügbarkeit von Geräten
- System Exclusive Messages (SysEx)
 - Weitergabe herstellerspezifischer Information an individuelle Geräte

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 72


Inhalt einer MIDI-Datei: MIDI-Ereignisse

- Header-Information
- Track-Information
 - Track = Separat abspielbare und bearbeitbare Musikspur
- Track-Information Teil 1: Metainformation
 - Track-Nummer, -Name
 - Angaben zum Instrument (z.B. aus General Midi-Instrumenten)
 - Zeitbasis
- Track-Information Teil 2: Melodie
 - Folge von Channel Voice Messages, jeweils mit Zeitstempel relativ zur Zeitbasis
 - Note On (Parameter Notenwert, Anschlagstärke)
 - Note Off (Parameter Notenwert, Anschlagstärke)
 - Polyphonic Key Pressure (Parameter Notenwert, Anschlagstärke) (Änderung der Anschlagstärke über die Zeit)
 - Pitch Bend Change (Parameter Verschiebung) (Tonhöhenverstellung)

Ludwig-Maximilians-Universität München

Prof. Hußmann

MIDI Ereignisse: Beispiel

- MIDI-Dateien sind extrem kompakt.
- MIDI-Aufzeichnungen sind genauer als normale Notenschrift!

Ludwig-Maximilians-Universität München

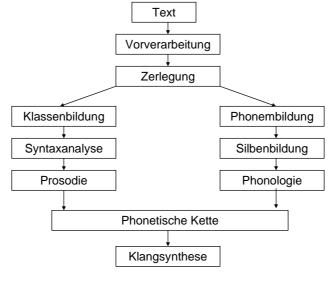
Prof. Hußmann

Digitale Medien - 6 - 74

Typische Funktionen von MIDI-Sequenzern

- Aufnehmen und Wiedergeben von Tonspuren
- Verschiedene Ansichten der gleichen Information:
 - Partitur, Keyboard-Matrix
 - Zeitgenaue Liniendarstellung
 - Darstellung von Zusatzinformation (z.B. velocity)
- Musik-Editor:
 - Komponieren (Noten einsetzen und verschieben, Längen verändern, Transponieren, ...)
 - Instrumente variieren
 - Effekte einfügen
 - Synchronisieren von Spuren und Abmischen
 - Oft integriert mit klassischer Mischpult-Funktionalität
 - Oft integriert mit Notensatz-Funktionalität

Sprachanalyse und Sprachsynthese


- Ein- und Ausgabe in natürlicher Sprache
 - Alter Traum der Informatik
 - Grenzgebiet zu Computerlinguistik, KI
- Sprachausgabe:
 - relativ stabile Technologie
 - Bestandteil vieler Standard-Betriebssysteme
- · Spracheingabe:
 - immer noch relativ wenig beherrscht
 - Trainingsfreie Systeme noch störanfällig
 - Trainingsgebundene Systeme existieren mit akzeptabler Leistung

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digitale Medien - 6 - 76

Ludwig-Maximilians-Universität München

Prof. Hußmann

Weiterentwicklung im Bereich Klangerzeugung

- MPEG-4 Standard:
 - Structured Audio Format ermöglicht Spezifikation von Klangerzeugern
 - SAOL (Structured Audio Orchestral Language) zur Beschreibung von elektronischen Instrumenten und Audioeffekten
 - SASL (Structured Audio Source Language) erlaubt differenzierte Formulierung von Spielanweisungen (über MIDI hinaus)
- Anwendungsfeld Interaktion:
 - Akustische Signale in Spielen und Softwaresystemen tendieren dazu, den Benutzer durch stupide Wiederholung zu ermüden
 - Softwaresynthese von Klängen eröffnet die Möglichkeit, situationsabhängig neue Klänge zu generieren, wo erwünscht

Ludwig-Maximilians-Universität München

Prof. Hußmann