
Kooperative, verteilte und mobile Augmented Reality-Anwendungen

Hauptseminar "Virtual and Augmented Reality"
Sara Streng
14.06.2004

Kooperative, verteilte und mobile AR-Anwendungen

1

Kooperative, verteilte und mobile AR-Anwendungen

1. Mobile AR-Anwendungen

Kooperative, verteilte und mobile AR-Anwendungen

- 3

Voraussetzungen

- real time Durchführung
- ständige Synchronisation
- Zugang zu Informationen über Ort und Situationen
- detailliertes Modell
 - geometrische Repräsentation der Umgebung
 - semantische und kontextuelle Elemente

2 gängige Anwendungen:

Gutes Beispiel Tourist weil:

- Navigation
- \longrightarrow
- Informationssuche

- wenig Wissen
- großes Interesse

Software Platform: Studierstube

kollaborative, computergestützte Arbeitsumgebung an der TU Wien

unterstützt:

- mehrere Anwender
- mehrere Applikationen
- Anzeigegeräte, wie stereoskopische HMDs
- Interaktion mit
 - virtuellen Objekten oder
 - user interface Elementen

Basiert auf Szenengraphen

Kooperative, verteilte und mobile AR-Anwendungen

Hardware Setup

Rucksack:

- Notebook
- WLAN → Kommunikation mit anderen mobilen Einheiten
 - GPS receiver → Positionsbestimmung

Helm:

- stereoskopisches HMD
- Orientierungssensor + Kamera

Handheld oder Gürtel:

• Touchpad → Cursor Kontrolle

Kooperative, verteilte und mobile AR-Anwendungen

User Interface

Information

Grafische Objekte:

Information wird in grafische Objekte gepackt, die in die natürliche Umgebung eingepasst werden

Kooperative, verteilte und mobile AR-Anwendungen

HUD (heads-up display):

Text, Bilder oder 3D Objekte, die in einem extra Fenster angezeigt werden

Navigation

- Nutzer wählt Zieladresse aus
- System berechnet kürzesten Weg
- Weg wird abgebildet als eine Reihe Zylindern, die mit Pfeilen verbunden sind
- System ist interaktiv und reagiert auf die Bewegungen des Nutzers → ständiges Wiederberechnen des kürzesten Wegs
- Nutzer wird informiert, wenn er in die falsche Richtung schaut.

Informationssuche

- Icons erscheinen, wenn historische / kulturelle Informationen existieren
- Auswahl durch Hinschauen
- Information erscheint in extra Fenster
- enthält Bilder und Text aus Touristenführern
- Nutzer kann Untermenge auswählen, die mit Schlüsselwörtern referenziert werden.

Kooperative, verteilte und mobile AR-Anwendungen

__ 9 **4**1

Anmerkungen

- Nutzer kann selbst Anmerkungen hinzufügen
- Virtueller Strahl führt durch rotes Kreuz
- Zeigt der Strahl auf ein Objekt, erscheint ein gelber Kreis
- Der Nutzer kann ein 3D icon aussuchen und platzieren

Daten Management: 3-Stufen Architektur

Zentrale Datenbank	Zentrales und effizientes Speicher- Management (geringe Redundanz)
Vermittelt zwischen Datenbank und Applikation	 Trennt die Präsentation von der Datenspeicherung Format-Transformation → Applikation kann effizienteres Format verwenden als Speicherformat
Applikationen	Effiziente Datenstrukturen

Architektur basiert auf XML Technologie

Kooperative, verteilte und mobile AR-Anwendungen

11

Bewertung des Projekts

Positives Feedback:

- leichter Umgang
- Interaktion mit HUD funktionsfähig

Probleme:

- GPS liefert ungenaue Positionen
- Hohe Gebäude stören Übertragung zu Satelliten

Es ist bis jetzt eine der wenigen Technologien, die über eine minimale aber ausreichende Genauigkeit und Robustheit verfügt.

MARS - Mobile Augmented Reality Systems (Columbia University):

- Zuerst einfaches Campus Informationssystem
- Erweiterung um Multimedia Information (Sound, Text, Bilder, Video)
- 3D GUI, die es auch Nutzern erlaubt zu dokumentieren

Kooperative, verteilte und mobile AR-Anwendungen

Weitere Anwendungsbereiche

ARQuake Project (University of South Australia)

- AR-Version des Quake Computerspiels:
- Man sieht die reale Umgebung + zusätzliche computergenerierte Informationen, vor allem passende Texturen

Kooperative, verteilte und mobile AR-Anwendungen

13

Interaktionsmöglichkeiten

Navigation:

- Folge einem anderen Nutzer (Ziel wird angepasst)
- Führe andere Nutzer (setze Ziel eines anderen)
- Treffe andere Nutzer (System errechnet Ziel, nämlich die Mitte zwischen den Positionen der beiden Nutzer)

Informationssuche:

- Nutzer können Themenauswahl teilen oder Empfehlungen geben
- Führungsprogramm kann Themenauswahl vorgeben

Anmerkungen:

virtuelle Icons können von anderen genutzt werden

Kooperative, verteilte und mobile AR-Anwendungen

2. Kooperative AR-Anwendungen

Kooperative, verteilte und mobile AR-Anwendungen

15

Voraussetzungen

- real time Durchführung
- ständige Synchronisation
- jeder Nutzer hat maßgefertigte Sicht des Datensatzes
- Kollaborateure vorzugsweise im selben Raum → natürliche Interaktion bei Diskussionen möglich

Kooperative, verteilte und mobile AR-Anwendungen

Studierstube – Umgebung

Kooperative, verteilte und mobile AR-Anwendungen

17

Hardware Setup

Personal Interaction Panel (PIP):

- Handheld in der Größe eines Notebooks
- Positions- und Orientierungsbestimmung

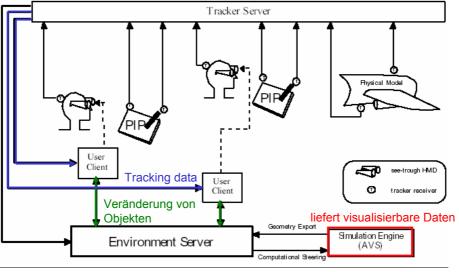
Helm:

- stereoskopisches HMD
- grobe Bestimmung des Blickpunktes durch magnetisches head-tracking
- feine Bestimmung durch optisches Tracking

Kooperative, verteilte und mobile AR-Anwendungen

Systemeigenschaften

- <u>Virtualität</u> (Objekte, die nicht existieren oder auf die man nicht zugreifen könnte werden eingefügt)
- Augmentation (Echten Objekten werden r\u00e4umlich angeordnete Informationen beigef\u00fcgt)
- Multi-User Unterstützung
- <u>Unabhängigkeit</u> (Kontrolle ist nicht auf eine Führungsperson beschränkt)
- Gemeinsame Sicht vs. Unterschiedliche Sicht (Objekte generell für alle sichtbar, aber Anzeige kann variieren)
- Interaktion und Interaktivität (Daten können interaktiv untersucht werden. Änderungen sind sofort sichtbar.)


Kooperative, verteilte und mobile AR-Anwendungen

19

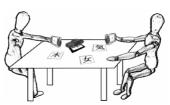
Merkmale der Augmentation

- Schichten (Daten werden in Schichten zerlegt, z.B. Grundriss –
 Möbel Maßstäbe. Jede Schicht kann getrennt angezeigt werden →
 maßgefertigte Sicht)
- Anmerkungen (Nutzer kann mit PIP an bestimmen 3D-Punkten Text hinzufügen, platzieren, verändern und verschieben)
- <u>Projektionswände</u> (Statische, virtuelle Objekte, die logisch dem PIP eines Nutzers zugeordnet aber für alle sichtbar sind)
- <u>Tracking bewegbarer Objekte</u> (um Gegenstände in das System mit einzubeziehen. Sie liefern Informationen über Positions-, Orientations- und Zustandsänderungen)

Systemarchitektur

Kooperative, verteilte und mobile AR-Anwendungen

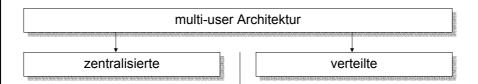
21


Weitere Anwendungsbereiche

Lernhilfen:

Mathematik- / Geometrieunterricht:
 Räumliches Verständnis kann viel leichter erworben werden

"Kanji Learning": Spiel zum Vokabeln lernen, bei dem 2 Spieler an einem Tisch sitzen. Auf dem Tisch liegen wie beim Memory-Spiel mit Kanji Symbolen versehene Karten verdeckt. Dreht ein Spieler die Karte um, wird das zu der Vokabel passende 3D-Symbol auf dem PDA angezeigt. Weiß der Spieler die Vokabel darf er weiter machen, sonst ist der andere am Zug.

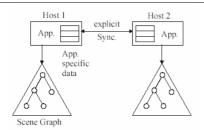

Kooperative, verteilte und mobile AR-Anwendungen

3. Verteilte AR-Anwendungen

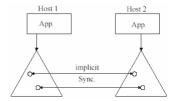
Kooperative, verteilte und mobile AR-Anwendungen

23

Vor- und Nachteile einer verteilten Architektur


Geeignet für zeitabhängige Applikationen

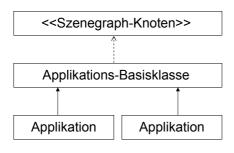
Bessere Leistung, wegen lokaler Prozesse


→ Obligatorisch für die Darstellung grafischer Modelle (Rendering)

Kooperative, verteilte und mobile AR-Anwendungen

Synchronisationsmöglichkeiten

- Nur (verteilter) Status wird synchronisiert
- Grafische Objekte lokal gespeichert.
- geringe Netzwerkbelastung
- + unabhängige Behandlung von Status und Grafiken

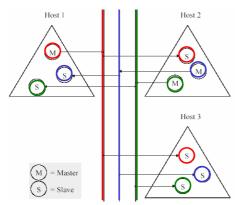


- Status ist in den Szenengraf eingebettet
- Mehrere lokale Kopien des szenegraphen werden synchronisiert.
- + Kein zusätzlicher Aufwand, um Status und Grafiken synchronisiert zu halten
- + Verteilung ist vollkommen transparent für den Entwickler

Kooperative, verteilte und mobile AR-Anwendungen

25

Applikationen im Szenegraphen



Mehrere Applikationsklassen erben von einer Basisklasse, die wiederum einen normalen Szenengraf-Knoten implementiert.

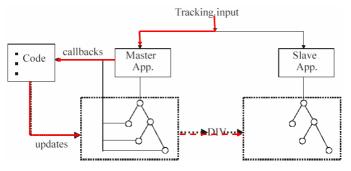
- → Mehrere Applikationsklassen
- → Multitasking möglich

Kooperative, verteilte und mobile AR-Anwendungen

Master / Slave Architektur

Für jede Applikationsinstanz wird <u>ein</u> Master Host festgelegt, der für die Ausführung verantwortlich ist.

In allen anderen Szenegraphen ist diese Applikation als Slave implementiert, der nur Updates vom Master empfängt, falls sich dessen Zustand ändert.


Vorteile der Master / Slave Architektur:

- Rechnungen, die der user input erfordert, müssen nur einmal getätigt werden
- Keine Inkonsistenzen möglich

Kooperative, verteilte und mobile AR-Anwendungen

27

Synchronisationsprozess

User input

callback

event

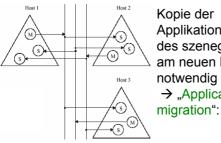
Änderung im szenegraph

Benachrichtigung des Slaves

Kooperative, verteilte und mobile AR-Anwendungen

Load Balance

Session-Manager überwacht den Computational Load. Wenn sich der Datenfluss auf Grund von Änderungen der Applikationsinstanzen ändert, veranlasst der Session-Manager "Activation Migration", d.h. der Master Host einer Applikationsinstanz wird verlegt.

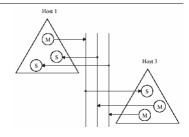

Umsetzung:

- alle Callbacks des Applikationsknotens und dessen Subgraf freigeben
- Migration: neuen Master definieren
- Callbacks neu registrieren.

Kooperative, verteilte und mobile AR-Anwendungen

29

Late Joining



Kopie der Applikation (d.h. des szenegraph) am neuen Host notwendig → "Application

Umsetzung:

Kompletter Status (grafisch und nichtgrafisch) wird im Buffer gespeichert, über Netzwerk an Host übertragen und dort dem lokalen Szenegraphen angehängt

Early Exit

Existiert am Host ein Master, so muss er an einen anderen Host verlegt werden

→ Activation Migration (wie bei Load Balance)

Kooperative, verteilte und mobile AR-Anwendungen

Fragen?? Kooperative, verteilte und mobile AR-Anwendungen 31

Quellen I

Mobil:

- "Collaborative Augmented Reality for Outdoor Navigation and Information Browsing" http://www.ims.tuwien.ac.al/media/documents/publications/reitmayrlbs2004.pdf
- "Recent Advantages in Augmented Reality" http://www.cs.unc.edu/~azuma/cga2001.pdf
- "MARS Mobile Augmented Reality Systems" http://www1.cs.columbia.edu/graphics/projects/mars/mars.html

Quellen II

Kollaborativ:

- "Collaborative Augmented Reality" http://www.ims.tuwien.ac.at/media/documents/publications/schmalstieg_habil.pdf
- "Augmented Reality Videoconferencing for Collaborative Work" http://www.ims.tuwien.ac.at/media/documents/publications/arvideoconf_hun03.pdf
- "Mathematics And Geometry Education With Collaborative Augmented Reality" http://www.ims.tuwien.ac.at/media/documents/publications/Construct3D_SIGGRAPH_Fi
 <a href="https://www.ims.tuwien.ac.at/media/documents/publications/Construct3D_SIGGRAPH_Fi
 <a href="https://www.ims.tuwien.ac.at/media/documents/publications/constructa/documents/publications/constructa/docume
- "Augmented Reality Kanji Learning"
 http://www.ims.tuwien.ac.at/media/documents/publications/ISMAR03_Demo_DanielWagner.pdf
- About The ARQuake Project http://www.wearables.unisa.edu.au/projects/ARQuake/www/index.html

Verteilt:

 "Distributed Applications for Collaborative Augmented Reality" http://www.ims.tuwien.ac.at/media/documents/publications/migration.pdf

Kooperative, verteilte und mobile AR-Anwendungen

33

Weitere Informationen zu kooperativen Anwendungen

Videokonferenz

Kooperative, verteilte und mobile AR-Anwendungen

35

Hardware Setup

Fenster, das <u>lokale</u> Nutzer repräsentiert

eigenen Umgebung

Virtuelle Interaktionsobjekte (Pen & Panel)

Konferenzmaterial

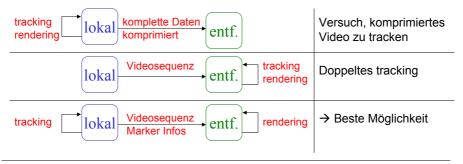
Fenster, das <u>entfernte</u> Nutzer repräsentiert

entfernten Umgebung

Virtuelle Interaktionsobjekte (Pen & Panel)

Konferenzmaterial

(Momentan ist die Anwendung auf 2 Standorte begrenzt.)


Kooperative, verteilte und mobile AR-Anwendungen

Tracking und Datenübertragung

Tracking:

Position und Orientierung werden aus optischen Markierungen berechnet, die aus der lokalen Videosequenz entnommen werden.

Datenübertragung zum entfernten Rechner:

Kooperative, verteilte und mobile AR-Anwendungen

37

Systemarchitektur

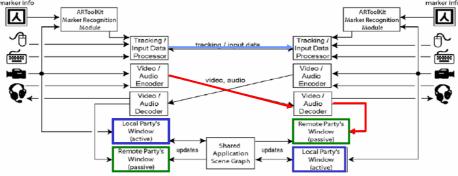


Figure 2. AR videoconference system architecture

Bild und Ton werden lokal komprimiert (Video/Audio Encoder) und über das Netz an den anderen Teilnehmer geschickt.

Tracking-Information wird lokal berechnet und an das lokale und entfernte AR System weitergeleitet.

Kooperative, verteilte und mobile AR-Anwendungen

Bewertung des Projekts

Problem:

Große Verzögerungen bei Updates machen die Applikation praktisch unbrauchbar

Kooperative, verteilte und mobile AR-Anwendungen

39

Interaktion mit dem PIP

3D-Mouse

Stift kann wie 3D-Maus zum Zeigen und Manipulieren benutzt werden

2D Desktop

Display kann an eine Wand projiziert werden und wie ein Desktop verwendet werden

Kamera

Stift und Panel können gemeinsam als Kamera funktionieren: Die Richtung, in die der Stift zeigt, gibt einer Virtuellen Kamera die Richtung an. Das erstellte Bild wird sofort auf dem Panel angezeigt.