Instrumented Environments

Andreas Butz, <u>butz@ifi.lmu.de</u>, <u>www.mimuc.de</u> Fri, 12:15-13:45, Theresienstr. 39, Room E 045

Topics today

- Networking
 - Wire-based
 - Ethernet
 - 1-wire-bus
 - Network surface: Pin& Play
 - Power Line
 - Wireless
 - WLAN
 - Bluetooth
 - Custom
 - Infrared

Ethernet (here: 10Base2)

First sketch of the Ethernet by Bob Metcalf in 1976

- Developed by Bob Metcalf (Xerox PARC)
- Open standard since 1980 (DEC, Intel, Xerox)
- IEEE standard since 1986
- Main Components:
 - Physical medium (cable)
 - Access rules inside the Ethernet interface
 - Ethernet frame with well-defined number of bits
- No central component
- CDMA/CD: Carrier Detect Multiple Access with Collision Detectio
- Deal with collissions by random timeout

1-Wire bus

- Ethernet needs a separate power supply for each connected device
- Problem with Ubicomp: lots of small devices with low power consumption
- Solution: Use the data cable to supply power (i.e. power over Ethernet or 1-Wire bus)
- 1-Wire bus needs only one cable (+ ground)

1-Wire bus

- Developed by Dallas Semiconductor
- Bidirectional communication
- "master" provides "slaves" with power

- The slave obtains power over the data cable
- The slave uses a capacitor to store the energy needed for proper operation (starting with 2,8 Volts)
- To send a logical 1: pull down voltage on data cable for less than 15 µs and...
- To send a logical 0: pull down voltage on data cable for more than
 60 µs

1-Wire bus

- Each slave has a unique (48-bit) Id
- Different types of slaves are available: NVRAM,
 EEPROM, temperature sensors, simple clocks, etc...
- Data cable may reach up to 300 meters
- Theoretically infinite number of slaves, but since reading is sequential there is a practical limit (e.g. Reading of 500 ids takes approx. 12 s).
- Some applications:
 - identification of persons
 - sense real world states
- Advantage: Integrity of data cables can be tested easily.

Pin & Play

[http://ubicomp.lancs.ac.uk/pin&play/]

Power Line Communication

- Uses existing in-house power cables
- E.g., PLC-ethernet bridge with 14MBit/s
- Some Applications:
 - LAN, Internet access
 - Telephone Voice over IP
 - Video on Demand, surveillance
 - Reading out energy counters
 - Remote control of devices
- http://www.homeplug.org/

Problems of Power Line

- Quality of connection depending on
 - Different circuits and phases (fix by adding a capacitor between them)
 - Background noise
 - Household appliances: e.g. TV, Radio (narrow bandwidth noise)
 - Electrical engines (e.g., drill: broad bandwidth noise)
 - Switches (e.g., for lights: single bursts)

Radio-based technologies

- Large cells (>100 m): e.g. WLAN, GSM, UMTS
- Small cells (10 100 m): e.g. Bluetooth
- Very small cells (1 30 m): RF module

WaveLan IEEE 802.11b

- Basically like ethernet on air (2.4 GHz)
- All stations send and receive on the same frequency.
- Repetition on collision
- High frequency means small range (50-500 m)
- Advantage: already widespread

Bluetooth http://www.bluetooth.com/

Idea: radio networks with small range replace today's cables and provide a bridge to existing networks.

Examples:

BT Headset for mobile phones

Phones, Fax, PDA, Computer, keyboard, printer, joystick, fridge, microwave, heating, car.....

Bluetooth

Principle: establish, enlarge and shut down ad-hoc networks, depending on proximity of Bluetooth enabled devices

Technical facts:

Speed ca. 1 MBit/s

Size of cell 10 or 100 Meter

Frequency 2.4 GHz

Consortium: 3Com, Ericsson, IBM, Intel, Lucent, Microsoft, Motorola, Nokia und Toshiba

Bluetooth Pico-nets (ad-hoc networking)

Each Pico-net has one master and up to 6 slaves

Frequency Hopping

- Schema-based change of frequencies
- Fast hopping and small package sizes reduce the probability of collisions

Bluetooth Specification (part of) Protocol Stack

Bluetooth Profiles

Each profile is a vertical cut of the bluetooth protocol stack

Problems of Bluetooth

- Lots of noise on 2.4 GHz (e.g. microwave oven and WLAN)
- Small bandwidth (worst case < 1/7 MBit/s)
- Still complicated interfaces
 - Inconsistency of supported profiles
 - Partially implemented profiles

Custom RF Devices

- Cheap solution, needs individual adjustments
- Small range (1-30m), low power consumption
- Iow bandwidth: 115 KBit/s
- Small form factor
- Examples:
 - Smart-Itswww.smart-its.org/
 - Berkeley Motes <u>www.tinyos.net/</u>

Infrared communication

- Uses invisible light (900nm)
- Does not travel through objects (needs line of sight)
- Analog: IrRemote
 - Modulated carrier
 - Good range (up to 20 m), small bandwidth
- Digital (IrDA)
 - Uses single light flashes for 1 and 0
 - Small range, high bandwidth (up to 4 Mbit/s)
 - Bidirectional communication between 0 and 2 meters

IrDA

- Founded 1993 as an organization, which defines an independent open standard
- The goal was to realize simple point to point solutions to connect devices.

Protocol stack simpler

than Bluetooth

- LAN
- Serial
- ObEX

Long range connections with IR

- Parctab Communication Hub
- Range 7m
- Bidirectional connection
- 9.600/19.200 baud
- analog IR

- Eyeled Sender
- Range up to 20 m
- Bi/Unidirectional connection
- 115 Kbaud
- IrDA compatible

Broadcasting structured information

- Cut down presentations to small packets (similar to Videotext)
 - Use different interaction levels
 - First package starts at level 0
 - => Conceptual presentation graph

Transition between levels:

- Qualitative change of information
- additional information
- more general or detailed information

Example: Presentation graph

Ideal transmission scheme

- Continuous transmission cycle
- Arbitrary entry point
- Quick availability of level 0
- Levels >0 may take longer
 - Can only be reached by interaction
 - Hide transmission time behind interaction time

Probabilistic transmission scheme

$$w_{ik}^{'} = \frac{1}{c^{i+1}}, c \ge 1$$

$$S = \sum_{i} \sum_{k} w'_{ik}$$

$$w_{ik} = \frac{w_{ik}}{S}$$

	C=	1,5	C=	2,0	C=	5,0
	w'ik	wik	w'ik	wik	w'ik	wik
0	1	0,351	1	0,471	1	0,776
1a	0,667	0,234		0,235	0,200	0,155
2a		0,156		0,118	0,040	0,031
2b	0,444	0,156	0,250	0,118	0,040	0,031
3a	0,296	0,104	0,125	0,059	0,008	0,006

Body Network

[e.g., http://www.skinplex.net/]

