Instrumented Environments
Andreas Butz, butz@ifi.lmu.de, www.mimuc.de
Fri, 12:15-13:45, Theresienstr. 39, Room E 045
Special Lecture on 07.07.

- Visit by Bill Buxton, Abigail Sellen and Shahram Izadi (Microsoft Research Cambridge)
- All working on interaction with Instrumented Environments
- Expect a Guru-level presentation!
 - Detailed topics yet TBD
- Bring friends!
- Theresienstr. Room 112
Tangible User Interfaces

Specialized TUIs
3D modeling with LEGO
(Anderson et al., SIGGRAPH 00)

- LEGO blocks with connectors and CPU
 - Keep track of their spatial configuration
 - Describe a voxel („volume pixel“) model
- Reconstruction in the host computer
- Interpretation acc. to prototypes
3D modeling with LEGO

- Each block has 8 plugs on top and 8 jacks on the bottom
 - Inner contact: communication
 - Outer contact: power
 - Use alternating layout and rectifier to power circuit

- When a new block is added, it triggers recognition process
3D modeling with LEGO

- Interpretation of structure:
 - Transform structure into a set of logical propositions
 - Define rules what is a wall, roof, window…
 - Determine from structure and rules, what block has which function
 - Construct 3D model accordingly
3D modeling with clay

- Model an object in clay
- Scan in its 3D shape
 - Laser striper
 - Camera recording silhouettes
- Try to recognize the structure by matching it to templates
- Interpret the structure according to template and animate it
3D modeling with clay

- Direction is known, size is normalized
- Compare for each voxel, whether it is filled in the template and the scan → find best match
- Templates have meaningful segments
- Cut scan into the same segments
- Use skeleton animation with the scan
HomeBox
(Piper, Hwang, Chi 00)

- Drawer represents page
- Physical content is put into drawers
- Insert drawer into scanner
- Annotate with additional text
Luminous room: Illuminating Light
(John Underkoffler and Hiroshi Ishii, CHI 98)

- Simulation of optical/holographic setups
- Phys. objects represent optical elements
- Top projection of resulting laser beam
Luminous room: Urban Planning (URP)
(John Underkoffler and Hiroshi Ishii, CHI 99)

- Move physical models of houses on a desk surface

- Simulate in the computer:
 - Shadows
 - Window reflections
 - Air flow and wind
Illuminating Clay
(Piper, Ratti, Ishii, Chi 02)

- Clay model on desk surface
- Top projection = output
- 3D laser scanner = input
- Used for landscape design
Illuminating Clay UI elements

- Deformable clay model
- UI elements for section and analysis functions
- Interaction with terrain
Illuminating Clay applications

- Slope variation with color feedback
- Solar radiation, shadows
Tangible User Interfaces

TUls in everyday objects
PingPongPlus
(Ishii et al. SIGGRAPH 98)

- Physical PingPong
- Virtually augmented
- Additional game functionality
PingPongPlus variations
MusicBottles
(Ishii, Mazalek, Lee, CHI 01)

- Bottles contain music (classical, jazz, techno)
- When placed on the desk, light appears around them
- When opened, music can be heard
- Metaphor: bottles contain something, can be released when bottle is opened
Marble Answering Machine
(concept study by Gary Bishop, RCA)

- Design study and some prototypes
- Each message represented by a marble
- Placing the marble on tray plays back the message
- Placing the marble on the phone calls back
Tangible User Interfaces

Communicative TUIs
InTouch
(Brave, Ishii, Dahley, CSCW 98)

- UI for remote „awareness“
- Enhance the feeling of physical presence
PegBlocks
(Piper, Ishii, CHI 02)

- Networked blocks with turn- and pushable pegs
- Used to teach kindergarten children about basic physical concepts (and to play, of course ;-)
Ambient User Interfaces

Integrated in everyday environment,
Periperal perception
Waterlamp
(Dahley, Wisneski, Ishii, CHI 98)

- Lamp shining from below
- Water surface by 3 actuators
- Changing information creates ripples on water surface
- Result: patterns projected on the ceiling
Pinwheels
(Dahley, Wisneski, Ishii, CHI 98)

- Actual pinwheels, mounted on small DC electrical motors
- Rotation speed changes according to information flows
- Metaphor: flow of air \leftrightarrow flow of information
The window as the interface
(Rodenstein, 99)

- Projection on „privacy film“ (by 3M)
- Can be made transparent or opaque by applying electricity

![Figure 1. It will get stormy in the next few hours.](image1)

![Figure 2. It will freeze tonight, better wear gloves.](image2)
LumiTouch
(Chang et al. CHI 01)

- Connected picture frames
 - show when other frame is squeezed
 - Create a feeling of mutual awareness
Digital Family Portrait

(Mynatt et al. CHI 01)

- In the “Aware home”
- Lets people “keep an eye” on others
- Balance betw. privacy and contact

- Icons around the frame indicate health, activity or relationships
- 28 icons on 4 sides = 4 weeks
- Position and size carry a meaning
Major interaction models

- strictly tool-based --> appliances
 - Human is the cause of all action
 - Tools just facilitate these actions

- automation, assisted living
 - Things happen magically by themselves
 - Controlled by machine intelligence in the background

- proactivity, intelligent agents
 - Environment takes the initiative
 - Manifestation through conversational agent
Appliances (from wikipedia)

- Appliance: usually referring to a device with a narrow function
- A certain class of computer products, where the device has a specific function, and limited ability to configure.
- Some consider the PDA to be a form of appliance, since most consumers do not make use of them as general purpose computing platforms.
Information appliances

[E. Bergmann, 2000]

- Information appliance: An appliance specializing in information: knowledge, facts, graphics, images, video, or sound. An information appliance is designed to perform a specific activity, such as music, photography, or writing.

- A distinguishing feature of information appliances is the ability to share information among themselves.
Smart Homes
(from wikipedia)

- The intelligent home is a technological achievement aimed at connecting modern communication technologies and making them available for everyday household tasks. [...]
- Intelligent home systems guide the user to perform any operation, to control lighting, heating, air conditioning, or to arm or disarm the security system, and to record or to listen to messages.
- Other themes envisioned in intelligent home systems are automation, connectivity, wireless networking, entertainment, energy and water conservation, and information access.
Assisted living (from wikipedia)

- Assisted Living [...] usually refers to a non-medical facility that is used by people who are not able to live on their own, [...]

- This highlights a very important and realistic aspect of this concept when applied to technology:
 - Support for disabled people
 - Support for elderly people
Instrumented Bedroom

- Support for disabled people
 - Robot person lift
 - Robot wheelchair
 - Robot bed
 - Fridge/oven combi
 - Sensing mattress

- Interface:
 - Control via voice input
 - Feedback via talking head („yes, master..“)
 - Gesture input (e.g., for TV for spastic patients)

http://hwrs.kaist.ac.kr/
Instrumented Bedroom (2)

- Patient can move between bed and wheelchair
 - Wheelchair will come automatically
 - Lift will act on commands
 - Bed will adapt shape on command
 - Fridge will heat up meal

- Sensing mattress can tell whether...
 - patient is in right position
 - patient has fallen off

- Safety + self-determined life
 - Nurse not constantly needed
 - Environment can call if there seems to be a problem
 - Sense of Mastery ("yes, master..")

http://hwrs.kaist.ac.kr/
The Virtual Room Inhabitant (VRI)

[Kruppa et al. AI05]
VRI: Character Engine

- Character engine server (Java) and character animation (Flash) connected via XML socket connection
- Different character gestures can be combined smoothly using a top level movie and several gesture sequences
- CE-server also controls and synchronizes the spatial audio device and the steerable projector
VRI: Example Scenario

User enters Intelligent Environment room

PDA puts position on event heap

CE-Server reads position information

CE-Server requests devices

CE-Server waits for access to devices

Presentation manager grants device access

CE-Server creates virtual display + image stream

CE-Server moves devices to init position

CE-Server sends script to character animation
Remaining Dates

- 30.6. Intelligent IE, more example systems
- 7.7. Guest lecture Bill Buxton et al.
- 14.7. Wearable, AR, lecture summary
- 19.7. Presentation of exercise results
Special Lecture on 07.07.

- Visit by Bill Buxton, Abigail Sellen and Shahram Izadi (Microsoft Research Cambridge)
- All working on interaction with Instrumented Environments
- Expect a Guru-level presentation!
 - Detailed topics yet TBD
- Bring friends!
- Theresienstr. Room 112
Photo-Workshop: neuer Termin!

- Kein Schein, freiwilliges Angebot
- Dauer: 1 Woche: 9.-13.Oktober
- Morgens ca.1/2 - 1 Stunde Vorbespr.
 - Technische Grundlagen (Optik, Kamera)
 - Bildgestaltung durch
 - Bildaufbau & Perspektive
 - Zeit, Blende
 - Licht, Inszenierung
- Tagsüber praktisches Photographieren
 - Voraussichtlich Architektur + Natur
 - Benötigt: eigene Kamera + Stativ
- Abends Bildbesprechungen am Rechner

https://wiki.medien.ifi.lmu.de/view/Main/PhotoWorkshopSoSe06