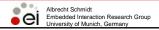
Vorlesung Mensch-Maschine-Interaktion

Albrecht Schmidt


Embedded Interaction Research Group LFE Medieninformatik Ludwig-Maximilians-Universität München http://www.hcilab.org/albrecht/

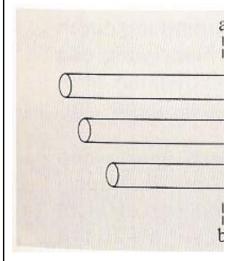
MMI 2005/2006

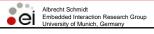
Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading (cont.)
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

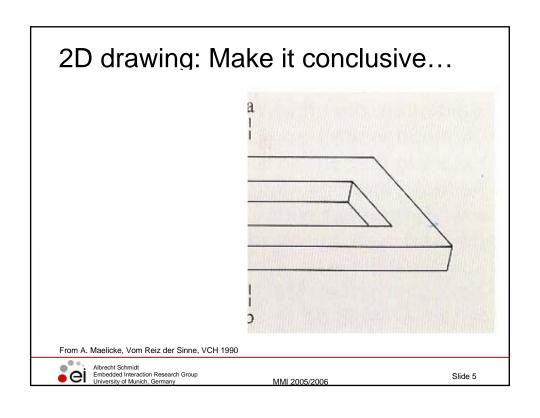
MMI 2005/2006

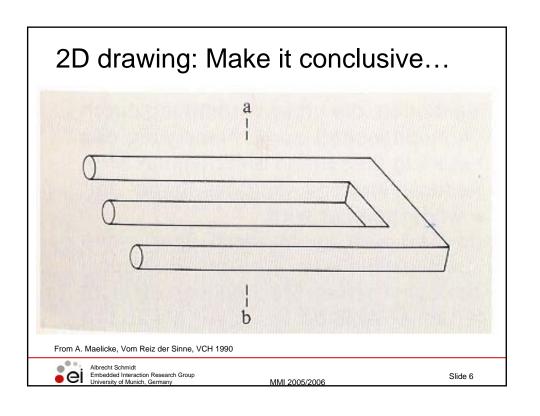
Seeing in 2D and 3D Views and Displays

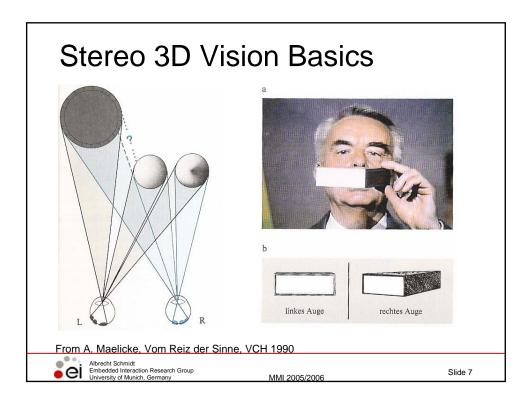

- Everything on a 2D display is 2D!
 - If we see it 3 dimensional we imagine it...
 - · Expectations and experience as basis
 - · Displaying a projection of a 3D model
- "real" 3D needs requires a image for each eye
 - Happens naturally when looking at 3D objects in physical space
 - Can be simulated by providing a separate image for each eye using technology
- Options to visualize 3D graphics
 - · Create a 2D image that the user translates in 3D in his head
 - Provide images (that represent a 3D model from a particular view point) for both eyes
 - Create 3D structures (static or dynamic)


MMI 2005/2006

Slide 3

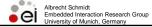

2D drawing: Make it conclusive...




From A. Maelicke, Vom Reiz der Sinne, VCH 1990

MMI 2005/2006

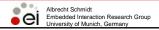
Stereo 3D Vision Basics


- Image for each object is dependent on the spatial relation between object and observer
 - changing viewpoint changes the images
 - Different people at different view points see different pictures

MMI 2005/2006

General principles Designing for human visual perception

- Visual design guidelines result from how humans perceive visual information
- Be aware of visual perception when designing nonstandard UI components (e.g. in games and on the WWW)
 - · Consider color perception
 - · Consider central and peripheral vision
 - Gestalt Laws
 - Change blindness
 - · Visual 3D impressions
- Be careful to make reading easy as it is an import time factor in many applications
- For more see Advanced topics in HCI (information visualization) and Smart Graphics



MMI 2005/2006

Slide 9

Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

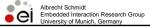
MMI 2005/2006

Human Ear Hearing

- 2 Ears
 - · information about the environment
 - · type of sound source
 - · distance and direction
- Physical apparatus:
 - outer ear protects inner and amplifies sound (3khz-12khz)

middle ear - transmits sound waves as

vibrations to inner ear

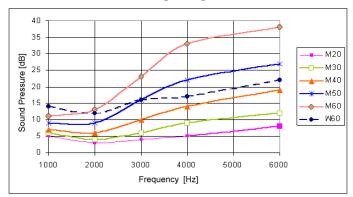

inner ear

chemical transmitters are released and cause impulses in auditory nerve

Sound

pitch – sound frequencyloudness – amplitude

loudness – amplitude Source:
timbre – type or quality Wikipedia and Dix et al.



MMI 2005/2006

Slide 11

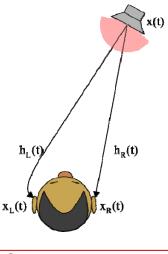
Threshold of hearing/pain Threshold of hearing/pain Threshold of pain Threshold frame of the pain o

Threshold of hearing for different age groups

Thresholds of hearing for male (M) and female (W) subjects between the ages of 20 and 60 (for details see http://en.wikipedia.org/wiki/Absolute_threshold_of_hearing)

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006


Hearing -Words and conversations

- Examples:
 - You are in a noisy environment like a crowded underground train and you can still have a conversation. You can even direct your attention to another conversation and "listen in".
 - You are in a conversation and somewhere else someone mentions your name. You realize this even if you have not been listening actively to this conversation before.
- The auditory system filters incoming information and allows selective hearing
 - Selectively hearing sound in environment with background noise
 - Spotting keyword, e.g. cocktail party phenomenon

MMI 2005/2006

- Caused by:
 - Interaural time difference (ITD)
 - Interaural intensity difference (IID)
 - Head related transfer functions (HRTF)
- Better for high than for low frequencies

Touch

- Provides important feedback about environment.
- May be key sense for someone who is visually impaired.
- Stimulus received via receptors in the skin:
 - thermoreceptors
 - heat and cold
 - nociceptors
- pain
- mechanoreceptors - pressure
 - (some instant, some continuous)
- Some areas more sensitive than others e.g. fingers.
- Kinesthesis: the ability to feel movements of the limbs and body
- Proprioception: unconscious perception of movement and spatial orientation arising from stimuli within the body itself.
- affects comfort and performance.

(see http://www.isr.syr.edu/course/neu211/lecture_notes/lec14.html)

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006

- Time taken to respond to stimulus: reaction time + movement time
- Movement time dependent on age, fitness etc.
- Reaction time dependent on stimulus type:
 - visual ~ 200ms
 auditory ~ 150 ms
 pain ~ 700ms
- Increasing reaction time decreases accuracy in the unskilled operator but not in the skilled operator.
- See Fitts' law

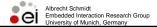
(experiment for visual reaction time see:

 $\underline{ http://biology.clc.uc.edu/fankhauser/Labs/Anatomy \ \& \ Physiology/A\&P202/Nervous \ System \ Physiology/Visual \ Reaction.htm}$

MMI 2005/2006

Slide 17

Chapter 3 Designing Systems for Humans

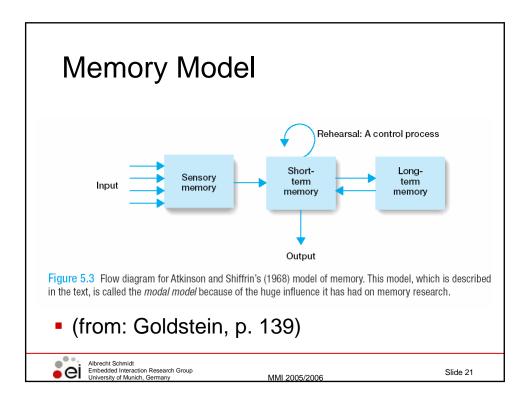

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

MMI 2005/2006

Motivation: basic calculation

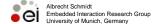
- Calculate: 35 * 6
- How do you do it?

MMI 2005/2006


Slide 19

Human Memory

 "Memory is the process involved in retaining, retrieving, and using information about stimuli, images, events, ideas, and skills after the original is not longer present." (Goldstein, p. 136)

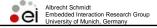

MMI 2005/2006

Memory

- Involves encoding and recalling knowledge and acting appropriately
- We don't remember everything involves filtering and processing
- Context is important in affecting our memory
- We recognize things much better than being able to recall things
 - The rise of the GUI over command-based interfaces
- Better at remembering images than words
 - · The use of icons rather than names

MMI 2005/2006

Motivation: memorizing

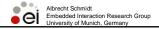

Memorize

275928129163

49 179 23 89 481

49 1 pizza now

heh ousew asg reena ndb igt

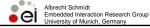


MMI 2005/2006

Slide 23

The problem with the classic '7±2'

- George Miller's theory of how much information people can remember
- http://www.well.com/user/smalin/miller.html
 (The Psychological Review, 1956, vol. 63, pp. 81-97)
- People's immediate memory capacity is very limited
- In general you can remember 5-9 chunks and chunks can be letters, numbers, words, sentences, images, ...


MMI 2005/2006

Wrong application of the theory

- Many designers have been led to believe that this is a useful finding for interaction design
 - Present only 7 options on a menu
 - · Display only 7 icons on a tool bar
 - Have no more than 7 bullets in a list
 - Place only 7 items on a pull down menu
 - Place only 7 tabs on the top of a website page

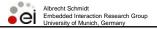
But this is wrong! Why?

- Inappropriate application of the theory
- People can scan lists of bullets, tabs, menu items till they see the one they want
- They don't have to recall them from memory having only briefly heard or seen them

MMI 2005/2006

Slide 25

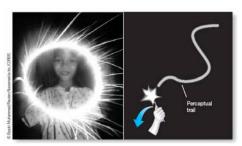
Motivation: Wason's cards



If a card has a vowel on one side it has an even number on the other

Is this true?

How many cards do you need to turn over to find out?


.... and which cards?

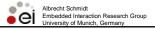
MMI 2005/2006

Sensory Memory

- "Sensory Memory is the retention, for brief periods of time, of the effects of sensory stimulation." (Goldstein, p. 140)
- E.g. Persistence of vision

(Image from Goldstein, p. 142)

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

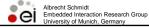

MMI 2005/2006

Slide 27

Sensory Memory functions

- 1. collecting information for processing
- 2. holding information briefly while initial processing is going on
- filling in the blanks when stimulation is intermittent

(from: Goldstein, p. 145)



MMI 2005/2006

- sensory memory
- Buffers for stimuli received through senses
 - · iconic memory: visual stimuli
 - · echoic memory: aural stimuli
 - haptic memory: tactile stimuli
- Examples
 - "sparkler" trail
 - stereo sound
 - · watching a film
- Continuously overwritten

Short-term memory (STM)

- Scratch-pad for temporary recall
 - rapid access ~ 70ms
 - rapid decay ~ 200ms
 - limited capacity 7± 2 chunks

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006

Coding of information

- Visual image of a person
- Phonological sound of a voice
- Semantic meaning of what a person is saying
- Coding in Short Term Memory
 - · Sound is most efficient
- When users have to remember something in the application → make it possible to code it phonological

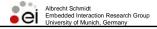
MMI 2005/2006

Slide 31

Long-term memory (LTM)

- Repository for all our knowledge
 - slow access ~ 1/10 second
 - · slow decay, if any
 - huge or unlimited capacity
- Two types
 - episodic serial memory of events
 - semantic— structured memory of facts, concepts, skills

semantic LTM derived from episodic LTM

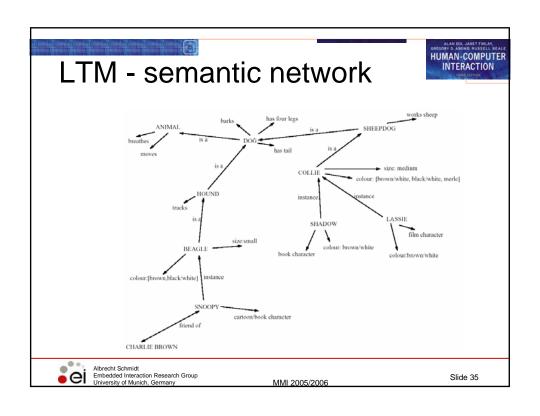

MMI 2005/2006

Long-term memory (cont.)

- Semantic memory structure
 - · provides access to information
 - represents relationships between bits of information
 - supports inference
- Model: semantic network
 - inheritance child nodes inherit properties of parent nodes
 - relationships between bits of information explicit
 - · supports inference through inheritance

MMI 2005/2006

Slide 33


Motivation:


Decisions and long term memory

- Do dogs bark? Yes/No
- Do dogs breathe? Yes/No
- The second question takes longer to answer → this indicates semantic coding!

MMI 2005/2006

LTM - Forgetting

decay

information is lost gradually but very slowly

interference

- new information replaces old: retroactive interference
- old may interfere with new: proactive inhibition

so may not forget at all memory is selective ...

... affected by emotion – can subconsciously `choose' to forget

MMI 2005/2006

Slide 37

LTM - retrieval

recall

 information reproduced from memory can be assisted by cues, e.g. categories, imagery

recognition

- information gives knowledge that it has been seen before
- less complex than recall information is cue

MMI 2005/2006

Deductive Reasoning

- Deduction:
 - derive logically necessary conclusion from given premises.
 - e.g. If it is Friday then she will go to work
 It is Friday
 Therefore she will go to work.
- Logical conclusion not necessarily true:
 - e.g. If it is raining then the ground is dry
 It is raining
 Therefore the ground is dry

MMI 2005/2006

Deduction (cont.)

When truth and logical validity clash ...

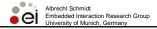
e.g. Some people are babies

Some babies cry

Inference - Some people cry

Correct?

People bring world knowledge to bear


MMI 2005/2006

Slide 41

Inductive Reasoning

- Induction:
 - generalize from cases seen to cases unseen e.g. all elephants we have seen have trunks therefore all elephants have trunks.
- Unreliable:
 - · can only prove false not true
 - ... but useful!
- Humans not good at using negative evidence e.g. Wason's cards.

MMI 2005/2006

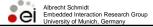
Abductive reasoning

- reasoning from event to cause
 - e.g. Sam drives fast when drunk.If I see Sam driving fast, assume drunk.
- Unreliable:
 - · can lead to false explanations


MMI 2005/2006

Slide 43

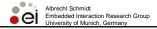
Problem solving


- Analogy
 - analogical mapping:
 - novel problems in new domain?
 - use knowledge of similar problem from similar domain
 - analogical mapping difficult if domains are semantically different
- Skill acquisition
 - · skilled activity characterized by chunking
 - · lot of information is chunked to optimize STM
 - conceptual rather than superficial grouping of problems
 - information is structured more effectively

MMI 2005/2006

Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

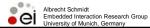


MMI 2005/2006

Clido 1E

Emotions Attractive Things Work Better

- Experiment
 - Six ATM identical in function and operation
 - · Some aesthetically more attractive than others
 - · Result: the nicer one's are easier to use...
- Aesthetics can change the emotional state
- Emotions all us to quickly assess situations
 - · Positive emotion make us more creative
- Attractive things make feel people good
 - → they are more creative
 - → things are easier to use...
- See D. Norman, Emotional Design (Chapter 1)



MMI 2005/2006

- Various theories of how emotion works
 - James-Lange: emotion is our interpretation of a physiological response to a stimuli
 - Cannon: emotion is a psychological response to a stimuli
 - Schacter-Singer: emotion is the result of our evaluation of our physiological responses, in the light of the whole situation we are in
- Emotion clearly involves both cognitive and physical responses to stimuli

MMI 2005/2006

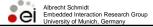
Slide 47

Emotion (cont.)

- The biological response to physical stimuli is called affect
- Affect influences how we respond to situations
 - positive → creative problem solving
 - negative → narrow thinking

"Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks"

(Donald Norman)



MMI 2005/2006

- Implications for interface design
 - stress will increase the difficulty of problem solving
 - relaxed users will be more forgiving of shortcomings in design
 - aesthetically pleasing and rewarding interfaces will increase positive affect

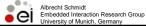


MMI 2005/2006

Slide 49

Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance


MMI 2005/2006

Affordance Theory

- Affordance is the perceived possibility for action
- Objective properties that imply action possibilities how we can use things – independent of the individual. (Gibson)
- Perceived Affordance includes expierence of an individual (Norman)
- Example: vandalism at a bus stop
 - Concrete → graffiti
 - Glass → smash
 - Wood → carvings

Gibson, J.J. (1979). *The Ecological Approach to Visual Perception*, Houghton Mifflin, Boston. (Currently published by Lawrence Eribaum, Hillsdale, NJ.)

Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books. (The paperback version is Norman, 1990.)

MMI 2005/2006

Slide 51

Natural and Intuitive User Interfaces?

- Very little is intuitive and natural with regard to computer user interfaces!
- To make it feel intuitive and natural
 - · Base UIs on previous knowledge of the user
 - · Use clear affordances and constraints

Donald A. Norman, Affordance, conventions, and design, Interactions. Volume 6, Number 3 (1999), Pages 38-41 http://www.cit.gu.edu.au/~mf/2506CIT/norm99.pdf

MMI 2005/2006

References

- Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale. (2003) Human Computer, Interaction (third edition), Prentice Hall, ISBN 0130461091 http://www.hcibook.com/e3/
- Donald A. Norman, Affordance, conventions, and design, Interactions. Volume 6, Number 3 (1999), Pages 38-41 http://www.cit.gu.edu.au/~mf/2506CIT/norm99.pdf
- Gibson, J.J. (1979). The Ecological Approach to Visual Perception, Houghton Mifflin, Boston. (Currently published by Lawrence Eribaum, Hillsdale, NJ.)
- Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books. (The paperback version is Norman, 1990.)
- Norman, D. A (2003) Emotional Design, ISBN: 0465051359 (Chapter 1)
- Goldstein, E. Bruce (2004). Cognitive Psychology: Connecting Mind, Research and Everyday Experience, ISBN: 0534577261 http://64.78.63.75/samples/05PSY0304GoldsteinCogPsych.pdf http://www.wadsworth.com/psychology.d/templates/student_resources/0534577261/author_video/
- A. Maelicke (1990), Vom Reiz der Sinne, VCH

MMI 2005/2006