3 Cryptographic Techniques – A Brief Introduction

3.1 Introduction to Cryptography
3.2 Symmetric Encryption
3.3 Asymmetric (Public-Key) Encryption
3.4 Digital Signatures

Literature:

Purpose of Cryptographic Techniques

• To protect the content of communication between two parties
 – Protection against various kinds of attacks
 – Preserving confidentiality and integrity of a message
 – Computer-equivalent to packaging and sealing

• To establish the identity of communication partners (authentication)
 – Computer-equivalent to hand-written signature
 – Nonrepudiation (Zurechenbarkeit): Avoiding false denial of the fact that someone has sent a message

• Applications for networked multimedia:
 – Encrypted content in DRM, decryption only for authorized users
 – Packaging keys and right specifications in DRM
 – Identifying business partners for payment procedures
 – Protecting electronic forms of money
 – Protecting important personal data
Encryption and Decryption

- A sender (often called Alice) wants to send a message to a receiver (often called Bob), in a way that an eavesdropper (often called Eve) cannot read the message.
 - Plaintext message (binary data) M
 - Ciphertext C
- Encryption E:
 $E(M) = C$
- Decryption D:
 $D(C) = M$
 such that $D(E(M)) = M$
- Encryption/Decryption cannot rely on keeping the algorithms secret.

Keys

- Encryption E:
 $E(K_E, M) = C$
- Decryption D:
 $D(K_D, C) = M$
 such that $D(K_D, E(K_E, M)) = M$
- Special case:
 Identical keys for encryption and decryption
- Security is based on the secrecy of the keys (not the secrecy of algorithm details)
Attack Terminology

- Ciphertext-only attack
 - Recover the plaintext or the keys based only on the ciphertext
- Known-plaintext attack:
 - Deduce the keys from given plaintext and corresponding ciphertext
- Chosen-plaintext attack:
 - Attacker (cryptanalyst) can obtain the encoding result on an arbitrary plaintext
- Chosen-ciphertext attack:
 - Attacker (cryptanalyst) can obtain the decoding result on an arbitrary ciphertext
- Brute-force attack
 - Trying out all possible keys
 - Breakability depends on available computing power

3 Cryptographic Techniques – A Brief Introduction

3.1 Introduction to Cryptography
3.2 Symmetric Encryption
3.3 Asymmetric (Public-Key) Encryption
3.4 Digital Signatures

Literature:
Symmetric Cryptographic Algorithms

- Encryption and decryption using the same key
 - Alternatively: One key can be computed from the other

- Stream algorithms or stream ciphers:
 - Operate bit-by-bit (or byte-by-byte)

- Block algorithms or block ciphers:
 - Operate on larger groups of bits (blocks)
 - Block size should not be too large - typical 64 bits

Data Encryption Standard DES

- Symmetric block cipher (64 bit blocks)
- Adopted by U.S. government in 1977, based in IBMs Lucifer algorithm
 - Designed for hardware realization
- Key length: 56 bits
- Each of the 16 “rounds”:

 64 bit input
 \[\text{Initial permutation} \]
 \[\rightarrow \text{Round 1} \]
 \[\rightarrow \ldots \]
 \[\rightarrow \text{Round 16} \]
 \[\rightarrow 32\text{-bit swap} \]
 \[\rightarrow \text{Final permutation} \]
 \[\rightarrow 64\text{ bit output} \]

- \(f \) does a number of permutations and substitutions

- Encoding and decoding algorithms identical
DES – Example for an Aging Standard

- Brute force attack to DES: 2^{56} permutations to be tried
 - 56 bit keys considered unbreakable in 1977
- Specialized hardware can test DES keys very fast
 - Rumours persist that the NSA (US National Security Agency) can break 56-bit DES in a few minutes time
 - 1997: DES Challenge
 - After 4 months, a DES-encrypted message could be decrypted
 - 2000: DES Challenge III won by “distributed.net” in 22 hours
 - Specialized supercomputer + CPU time from 100,000 PCs in the Internet
 - Key test rate 240 billion keys/second
- Practical workaround: “Triple DES”
- Obstacle for unbreakable codes:
 - U.S. government apparently wants to be able to break the standard encryptions
- Strong cryptographic products are considered weapon technology by the U.S. government!
 - Export restrictions

IDEA

- Xuejia Lai/James Massey (ETH Zürich) 1990
 - Strengthened against “differential cryptoanalysis” in 1992
 - Partially patented by Ascom (Switzerland) until 2011
- Block cipher, working on 64 bit blocks
- Key length 128 bit
- Twice as fast as DES (in particular fast in software)
- Idea: “Mixing operations from different algebraic groups”
 - XOR
 - Addition modulo 2^{16}
 - Multiplication modulo $2^{16}+1$
- Can be considered as quite safe according to current knowledge
Advanced Encryption Standard AES

- U.S. National Institute of Standards and Technology (NIST)
 - 1997: Call for proposals for an unclassified, publicly disclosed symmetric encryption algorithm, key sizes 128, 192, and 256 bits
 - 15 submissions, 5 candidates selected (MARS, RC6, Rijndael, Serpent, Twofish)
 - 2000: Rijndael declared to be official AES
- Rijndael (Joan Daemen, Vincent Rijmen, Belgium):
 - Between 10 and 14 rounds, depending on key and block length
 - Operations in each round:
 » XOR
 » Byte substitution
 » Row shift (in a grid representation)
 » Mixing of columns based on polynomial (in a grid representation)

- Other common alternative symmetric algorithms: RC4, RC6

3 Cryptographic Techniques – A Brief Introduction

3.1 Introduction to Cryptography
3.2 Symmetric Encryption
3.3 Asymmetric (Public-Key) Encryption
3.4 Digital Signatures

Literature:
Asymmetric or Public Key Encryption

- Main problem of symmetric cryptography: How to obtain the shared, secret key?
 - Off-line transportation
 - Key distribution architectures, e.g. Kerberos
- Public-key cryptography: Whitfield Diffie, Martin Hellman 1976
 - Each person gets a private (secret) key and a public key

- Public-Key Cryptosystem:
 Encryption with public key: $PK(M) = C$
 Decryption with secret key: $SK(C) = M$
 such that $SK(PK(M)) = M$
 - By publicly revealing PK, the user does not reveal an easy way to compute SK.
- Mathematical background: “Trapdoor one-way function”
 - e.g. prime factorization of large numbers

RSA: Mathematics

- Creating a public/secret key pair:
 - Choose two large primes p and q and compute the “modulus” $n = pq$
 - Randomly choose a number $e < n$, relatively prime to $\phi = (p-1)(q-1)$
 (Euler's totient function)
 » (n, e) is the public encryption key
 - Compute $d = e^{-1} \mod \phi$, i.e. such that $(ed-1)$ is divisible by ϕ
 » (n, d) is the secret decryption key
- Encryption:
 $C = M^e \mod n$
- Decryption:
 $M = C^d \mod n$

For an example, see e.g. http://www.di-mgt.com.au/rsa_alg.html
RSA: Pragmatics

- Key size is variable, typical 1024 bits
- RSA relies on exponentiation which is computing-intensive
 - DES is at least 100 times as fast as RSA in software
 and 1000 to 10000 times as fast in hardware
- Security of RSA is conjectured to rely on factorization of large numbers into primes
- Hybrid usage of symmetric and asymmetric cryptosystems *(enveloping)*
 - Choose a symmetric key (e.g. for AES)
 - Encode the symmetric key with an asymmetric cryptosystem (e.g. RSA) to transmit the shared (symmetric) key to the communication partner
 - Combination of advantages:
 » Use asymmetric system for keeping the secrets locally
 » Use symmetric system for mass-data encoding
- RSA is part of many Internet protocols for secure interaction, e.g. S/MIME, SSL, TLS, IPsec, ...

Public Key Infrastructure

- Weak point in public-key cryptosystems
 - Bogus public key associated with a valid identity
 - Attacker can masquerade as another person
- Establishing trust in public keys:
 - Trusted Third Party (TTP)
 » e.g. governmental organisation, financial institution
 - TTP issues a message *(certificate)* that contains
 » User identity
 » Public key
 » Validity period
 » Issuer (TTP identity)
 - TTP "signs" certificate
 » This can be achieved by using the own public key (see next section)
 » All participants know the signatures (public keys) of TTP, i.e. can trust that the certificates actually come from the issuing TTP
Certification Authorities

- A TTP issuing certificates is a Certification Authority (CA)
- CAs are organized in a hierarchy, signature of root CA universally known

```
   CA1 PK_CA1 SigRoot  Root CA  CA2 PK_CA2 SigRoot
        CA 1                CA 2  
    Alice PKAlice SigCA1   Bob PKBob SigCA2
```

The certificates for the public key can be transferred with the message (or put on a website etc.)
E.g. message from Alice to Bob:
```
   CA1 PK_CA1 SigRoot  Alice PKAlice SigCA1  Message...
```

X.509

- ITU-T X.500 recommendations series
 - Global database representing objects (people and processes)
 - Tree structured
 - Top level = countries
 - Identity of an object is a pathname in the tree: Distinguished Name (DN)
 - E.g. “c=GB, o=Universal Exports, cn=James Bond”
 (o: organization, cn: common name)
- ITU-T recommendation X.509
 - Public key certificate data format
 - Linking a public key with an X.500 Distinguished Name (= Identity)
 - Further fields for validity etc.
3 Cryptographic Techniques – A Brief Introduction

3.1 Introduction to Cryptography
3.2 Symmetric Encryption
3.3 Asymmetric (Public-Key) Encryption
3.4 Digital Signatures

Literature:

Digital Signature with Asymmetric Cryptosystems

- Message authentication (digital signature):
 - To establish trust that a message actually originates from a certain sender
 - Must involve full message body, i.e. similar to message encryption
- Some asymmetric cryptosystems allow to use “inverse encryption” for a digital signature, e.g. RSA
 - For such cryptosystems, the inverse equation holds: \(PK(SK(M)) = M \)
 - Encryption with own secret key
 - Verification possible by anybody knowing the public key
- Example: Suppose Alice wants to send a message \(M \) to Bob ensuring the message’s integrity and that it is from her
 \[S = M^d \mod n \]
 \((n, d)\) is Alice’s secret key
 Equivalent to decryption algorithm
 - Alice sends \(M \) and \(S \) to Bob
- Bob verifies:
 \[M = S^e \mod n \]
 \((n, e)\) is Alice’s public key
 Equivalent to encryption algorithm
- Other digital signature standards exist, e.g. DSS/DSA (Digital Signature Standard/Algorithm by NIST)
Digital Signatures and PKI

- The “chain of trust” in a PKI can be reduced to the single fact
 - Everybody knows the public key PK_{Root} of the Root CA
- Root CA signs C Axel certificates using its secret key SK_{Root}
 - Everybody can verify the certificates using PK_{Root}
- C Axel signs certificates using its secret key $SK_{\text{C Axel}}$
 - Everybody can verify the certificate as soon as he has $PK_{\text{C Axel}}$
 - ... which he can obtain from a Root-signed certificate

Message Digesting or Hashing

- Sometimes not encryption, but integrity of message is the goal
 - Simpler algorithms similar to symmetric encryption
- Hash (or digesting) function for messages
 - Computes short code from long message
 - Difficult to invert (i.e. to obtain message from code)
 - Collision-resistant (i.e. unlikely to find two messages with same hash code)

- Examples of message digesting algorithms:
 - MD5 (Ron Rivest) (128 bit code)
 - Secure Hash Algorithm SHA (NIST) (160 bit code)

- Combination of message digest and signing the digest:
 - Faster way of authenticating a message