4 Electronic Payment Systems

4.1 Traditional Payment Systems
4.2 Credit-Card Based Payment Standards
4.3 Electronic Cash and Micropayments
4.4 Practice of E-Payment

Literature:

A Brief History of Cash Money

- Direct exchange of goods
 - Problematic since “double coincidence of wants” is required
- Commodity payment
 - Exchange with goods of well-known value (e.g. corn, salt, gold)
 - Leading to gold and silver coins
- Commodity standard
 - Tokens (e.g. paper notes) which are backed by deposits of the issuer
- Fiat money
 - Assuming a highly stable economy and government
 - Tokens no longer (or not fully) backed by deposits
 - Trust in the issuer replaces deposits
- Cash is used for 80% of all financial transactions
 - Cash is not free of transaction costs!
 - Replacement of coins/notes paid out of taxes
Forms of Payment

- Cash
- Cheques
 - Using “clearing house” between banks
- Giro, direct credit transfer (Überweisung), direct debit (Lastschrift)
 - Requires “clearing house”, today fully automated (Automated Clearing House ACH)
- Wire transfer
- Payment cards (cost usually borne by the merchant):
 - Credit card
 » Associated with credit promise from bank
 - Charge card
 » Requires full settlement of bill each month
 - Debit card
 » Card used to initiate an immediate direct debit

Customer Preferences in Non-Cash Payment

- According to the Bank for International Settlements, www.bis.org
- Figures for 1998

<table>
<thead>
<tr>
<th>Country</th>
<th>Cheques</th>
<th>Credit Transfer</th>
<th>Payment Cards</th>
<th>Direct Debit</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>70 %</td>
<td>3.7 %</td>
<td>24.3 %</td>
<td>2.0 %</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.9 %</td>
<td>45 %</td>
<td>24.5 %</td>
<td>28.5 %</td>
</tr>
<tr>
<td>UK</td>
<td>28 %</td>
<td>19.3 %</td>
<td>33.1 %</td>
<td>19.4 %</td>
</tr>
<tr>
<td>Germany</td>
<td>4.8 %</td>
<td>50.6 %</td>
<td>5.1 %</td>
<td>39.5 %</td>
</tr>
<tr>
<td>Turkey</td>
<td>6.9 %</td>
<td>2.6 %</td>
<td>83.9 %</td>
<td>--</td>
</tr>
</tbody>
</table>
Customer and Merchant Preferences in German E-Commerce

- Study by Fittkau & Maaß (according to Computerzeitung 44, Oct 2004):
 - Used payment methods in German online commerce
 - Multiple assignment of preferences was possible
- Used payment methods:
 - 75% traditional billing (payment after delivery, usually by credit transfer)
 - 42% direct debit (Lastschrift)
 - 37% credit card
 - 8% electronic payment methods
- Electronic payment is still not well known and therefore rarely used
 - Payments for small amounts (less than €2) are problematic

4 Electronic Payment Systems

4.1 Traditional Payment Systems
4.2 Credit-Card Based Payment Standards
4.3 Electronic Cash and Micropayments
4.4 Practice of E-Payment

Literature:
Credit Card MOTO Transactions

- MOTO = Mail Order/Telephone Order
- Transactions without physical co-location of buyer and merchant
- Special rules:
 - Additional information
 - Address
 - Card security code
 - Often: Matching of delivery address and credit card billing address
- Extremely popular form of online payment
 - Data transfer secured by SSL, i.e. hybrid symmetric/asymmetric cryptosystem
- Disadvantages:
 - Many possibilities for fraud
 - Anonymity of customer not possible
 - High transaction cost – difficult for small amounts

SET

- SET = Secure Electronic Transactions
 - Standard by Visa and MasterCard 1996
 - Today almost without significance (after attempt to revive it in 1999)
 - But still a model for a thorough way to deal with the problem
- Scope restricted to authorization of credit card payments
 - No actual funds transfer
- Focus on trust model and authorization
 - Using public/private key cryptosystem
- Complex (three volumes specification)
 - But safe against all major risks
- Special PKI: All participants have to obtain (X.509) certificates
 - “Brand Certification Authority” (MasterCard/Visa)
 - Geopolitical Authority (optional)
 - Cardholder/Merchant/Payment CA
SET Initialization

- Initialization (PInitReq):
 - Cardholder to Merchant
 - Contains: Brand of card, list of certificates, "challenge" (to ensure freshness)
- Initialization Response (PInitRes):
 - Merchant to Cardholder
 - Contains: Transaction ID, response to challenge, certificates, "merchant challenge"

- Roles:
 - Cardholder (Buyer)
 - Merchant (Seller)
 - "Acquirer" (essentially credit card organization)
 - Operating a "payment gateway"

Dual Signatures

- General concept:
- Alice wants to send Message 1 to Bob and Message 2 to Carol, and she wants to assure Bob and Carol that the respective other message exists
 - To Bob she sends Message 1 and Digest 2
 - To Carol she sends Message 2 and Digest 1
SET Purchase

- Purchase Order (PReq):
 - Cardholder to Merchant
- Order Information (OI):
 - Identifies order description at the merchant
 - Contains response to merchant challenge
 - Includes random information ("nonce") for protection against dictionary attacks
- Payment instructions (PI):
 - Card data, purchase amount, hash of order, transaction ID
 - Payment instructions are encrypted with acquirer’s public key (merchant cannot read it)
 - “Extra strong” encryption by using RSA (and not DES, for instance)
- Dual signature for OI going to Merchant and PI going to Acquirer

SET Purchase Request Data
SET Authorization

- Authorization Request (AuthReq)
 - Merchant to Acquirer
 - Encrypted with Acquirer’s public key
 - Signed with Merchant’s secret key
- Contains: TransactionID, amount, Hash(Order), Hash(OIData), PIData, merchant details, cardholder billing address
 - Hash(Order) contained twice
 - from merchant directly
 - as part of PIData (encrypted, e.g. just forwarded from cardholder)
 - Can be used to verify that cardholder and merchant have agreed on order details
- Authorization Response (AuthRes)
 - Acquirer to Merchant
 - Contains: TransactionID, authorization code, amount, data, capture token (to be used for actual funds transfer)

4 Electronic Payment Systems

4.1 Traditional Payment Systems
4.2 Credit-Card Based Payment Standards
4.3 Electronic Cash and Micropayments
4.4 Practice of E-Payment

Literature:

Electronic Cash

- Many attempts have been made to transfer the advantages of cash money to digital transactions:
 - Acceptability independent of transaction amount
 - Guaranteed payment – no risk of later cancellation
 - No transaction charges
 - » no authorization, no respective communications traffic
 - Anonymity

- There does not exist an electronic system which captures all of the above attributes!
 - But there are interesting approximations...

DigiCash / Ecash

- DigiCash (David Chaum)
 - Dutch/U.S. company, 1992
- Ecash
 - Electronic equivalent of cash, developed by DigiCash
 - Fully anonymous using cryptographic techniques
- History:
 - 1995: Mark Twain Bank, Missouri, started issuing real Ecash dollar coins
 - 1998: DigiCash bankruptcy
 - Relaunch as “eCash Technologies”
 - 2002: eCash Technologies taken over by InfoSpace
 - » Mainly to acquire valuable patents
- Ecash still an interesting model for electronic cash
Minting Electronic Coins

- Each coin has a serial number
 - Serial number is generated by a client’s “cyberwallet” software
 - Randomly chosen, large enough to avoid frequent duplicates (e.g., 100 bits)
- Coins, respectively their serial numbers, are signed by the bank
 - Bank does not know the serial number through “blinding” (see next slide)
 - Bank is not able to trace which coins are given to which person
- Bank uses different keys for different coin values
 - E.g., 5-cent, 10-cent, 50-cent signatures
- Contents of an electronic coin:
 - Serial number SN
 - Key version (can be used to obtain value, currency, expiry date)
 - Signature: $F(SN)$, encrypted with one of the bank’s secret keys
 - Where F computes a hash code of SN and adds some redundant information – to avoid forging of coins
Blinding

- General concept:
- Alice wants Bob to sign a message without Bob seeing the content.
- Analogy: Envelope with message and a sheet of carbon paper
 - Signature on the outside of the envelope goes through to the contained message
- Procedure:
 - Blinding achieved by multiplication with random value (blinding factor)
 - Alice sends multiplied (blinded) message B(M) to Bob
 - Bob signs blinded message: SignBob(B(M))
 - Signature function and blinding (multiplication) are commutative:
 - SignB(M) = B(SignB(M))
 - Alice de-blinds message (by division with blinding factor)
 - The resulting message is SignBob(M), indistinguishable from a message directly signed by Bob

Avoiding Forged Coins

- Assuming the function F was omitted
 - Coin contains serial number SN in plaintext
 - Signature is just SK(s)(SN)
- Forging a coin:
 - Choose a large random number R
 - Encrypt R with bank’s $1 public key: S = PK$1(R)
 - Construct coins which contain S as serial number and R as signature
 - Now the coin can be verified (not distinguishable from real coin):
 \[SK$1(S) = SK$1(PK$1(R)) = R \]
 - Therefore introduction of function F in coin definition
Avoiding Double Spending

- E-Coins are just pieces of data which can be copied
 - How to avoid that the same coin is spent several times?
- Ecash solution:
 - Central database of *spent coins*
 - Merchants must have an online connection with the Ecash bank
 - Before accepting a coin: check whether it has been spent already
- Problem:
 - Database of spent coins can become a performance bottleneck
 - Offline trade with coins is impossible

An Ecash Purchase

- Client has Ecash coins stored in his cyberwallet
- Merchant receives an order from the client
- Merchant sends a *payment request* to the client’s cyberwallet
 - Amount, timestamp, order description, ...
- User is asked whether he/she wants to pay
- Coins for the (exact) amount are taken from wallet
 - There is no change with Ecash
 - Otherwise the merchant could record the serial numbers of his coins given to the client and try to identify the client
- Coins are encrypted with bank’s public key when sent to merchant
 - Merchant just forwards them but cannot read anything
- To prove the payment:
 - Client generates a secret and includes (a hash of) it into the payment info.
The Perfect Crime

Bruce Schneier:

• An anonymous kidnapper takes a hostage.
• Kidnapper prepares a large number of blinded coins and sends them to the bank as a ransom demand.
• Bank signs the coins to save the hostage.
• Kidnapper demands that the signed coins are published, e.g. in newspaper or television. Pickup cannot be traced. Nobody else can unblind the coins but the kidnapper.
• Kidnapper saves the blinded coins to his computer, unblinds them, and has a fortune in anonymous digital cash
• Hopefully, kidnapper releases the hostage...

Off-Line Coins

• Chaum/Pedersen 1992, Stefan Brands 1993:
 – Coins may consist of several parts
 – To use a coin in a payment transaction, one part of the coin must be revealed. Payer is not identified.
 – If the coin is used a second time, a second part of the coin is revealed – and the payer is identified.
 – This way, it is possible to trace double spendings after the fact, and to identify the origin of the double-spent coins.
• Algorithmic idea:
 – Identity I of user is encrypted with one-time random number P
 » Is part of coin
 – Special challenge-response system: Merchant asks client for answer on a random challenge and stores the results
 – As soon as the merchant has two results for different challenges, he can calculate the information required to decrypt the identity of the payer
Macropayments and Micropayments

- Systems described above were designed for “macropayments”
 - Minimum granularity 1 cent (penny, etc)
- Prices for services often quoted in smaller quantities
 - See petrol prices...
 - Hundredth or thousandth of cent
- Micropayment:
 - Payment technology suitable for very small amounts
- Problem:
 - Transaction overhead from macropayment systems larger than value
- Advantage:
 - Losing an electronic micro-coin is not a serious damage
- Light-weight, fast, scalable protocols
- Historic pioneer: **Millicent** project (1995)
 - Digital Equipment Corporation (now part of Compaq, part of HP)
 - Key innovations: Brokers intermediating between vendors and *scrip*
 (digital cash valid only for a specific vendor)

MicroMint

- Developed by Ron Rivest and Adi Shamir (1996) (similar: *PayWord*)
- Idea:
 - Signing of e-coins by bank is computationally too expensive
 - Make it computationally difficult for everybody else but a broker to mint valid coins
 - Make it quick and efficient for everybody to verify a coin
 - No check for double spending
k-Way Hash Collisions

- MicroMint coin is a *k-way hash collision function*
- One-way hash function:
 \[H(x) = y \]
- Hash function collision:
 \[H(x_i) = H(x_j) = y \]
 - It is computationally hard to generate two values that map to the same value
- k-way hash function collision:
 - k different input values map to the same output value
- MicroMint coin (4-way hash collision):
 \[C = [x_1, x_2, x_3, x_4] \] such that the hash function gives the same value for all \(x_i \)
- Verifying a MicroMint coin:
 - Just check the hash function value for the four given values

Minting MicroMint Coins

- Length of \(x \) and \(y \) values restricted to a fixed number of bits
 - Assuming \(y \) values are \(n \) bits long
- Analogy: Throwing balls at \(2^n \) bins
 - “Balls” generated at random
 - “Bins” represent \(y \) values
- Successfully minted coin:
 - 4 balls in one bin
- Difficult to mint first coin, further coins much quicker

![Ball Diagram](image)
Preventing Forgery with MicroMint

• Special hardware:
 – Broker can gain speed advantage over attackers
• Short coin validity period:
 – Coins do not live more than a month
• Early minting:
 – Coins are minted a month or more before distribution – speed advantage
• Coin validity criterion:
 – May be changed every month, e.g. the used hash function
• Different bins:
 – Broker may remember the unused bins for the month and use them to detect forged coins
• ...

4 Electronic Payment Systems

4.1 Traditional Payment Systems
4.2 Credit-Card Based Payment Standards
4.3 Electronic Cash and Micropayments
4.4 Practice of E-Payment
Payment Service Providers

- Nowadays, many users apparently have learned to trust encrypted transmission over the Internet
 - Problem: Confidential data (e.g. credit card number, bank account) still known to merchant
- Solutions:
 - Build up high-trust merchant brands (e.g. Amazon)
 - Use independent third parties as payment service provider
 » Examples: FirstGate, PayPal
- Payment service provider:
 - Establishes account with user, keeps confidential data away from merchant
 - Provides easy tools for merchants to integrate payment functions into Web shops
 - Accumulates small payments to monthly bills

Banner Advertising

- Advertising is often used as a form of payment on the Web
- Information services on the Web can be financed by advertising income
- Typical billing schemes for advertisers:
 - Page impression: Banner is put one time in front of a Web user
 - CPM: Cost per thousand (Roman 1,000 sign) page impressions
 » Typical cost range € 0.50 up to € 40 (figures from 2001)
 - CPC: Cost per click
 » Typical cost range € 0.10 up to € 1 (figures from 2001)
Mobile Network Based Payment Systems

- Example PayBox (www.paybox.net)
 - Registration with Payment Service Provider (paybox) – Customer obtains PIN
 - Payment request in E-Commerce or M-Commerce applications
 - Payment Service Provider calls back on mobile phone
 - Customer confirms payment by entering PIN
 - Confirmation by email/SMS
 - Mobile phone bill is not used for money transfer

- Add-on services:
 - Online credit transfer
 - User-to-user credit transfer via mobile phone

- Paybox company in Germany: Business closed 2003
 - Some success in Austria
 - www.payboxsolutions.com

Payment through Phone Bill

- Example T-Pay (Deutsche Telekom)
 - Billing data of phone bills are kept up to date
 - No additional bill for customer
 - Suitable for small amounts

[Diagram of payment through phone bill]