5 Multimedia Content Description

5.1 Metadata: Concepts and Overview
5.2 RDF: XML Metadata
5.3 Metadata for Authoring: AAF & SMPTE Standards
5.4 Generic Metadata Framework: MPEG-7
5.5 Automatic Metadata Extraction

Literature:
Rosenblatt/Tripp/Mooney, Chapter 6

Unlabelled Video Tapes & The Internet

- The Unlabelled Video Tape Problem
 - Even worse with digital media: Various formats, variants
- Digital media production:
 - Labelling of parts to be composed
 » Date, time, format, ...
 - Representing the composition
- Digital media on the Internet
 - Identifying digital media
 » Title, author, genre, ...
 - Searching for specific media, e.g. audio, video content
 - Fine-grained search within media
 » e.g. person search within video content
 - Bringing together related media (e.g. text news and photos)
 » (Automated) syndication
Content, Essence, Metadata

• Content
 – consists of essence data and metadata

• Essence
 – parts of content that directly represent program material such as audio, video, graphic, still-image, text, or sensor-data

• Metadata
 – parts of content that contain data used
 » to describe essence or
 » to provide information on its use
 – metadata objects sometimes called “mobs”

Metadata Problems

• Creation metadata
 – During the creation of media essence, metadata is created but often ignored
 – Example: EXIF data in JPEG

• Manually added metadata
 – Users notoriously ignore the administration of metadata

• Metadata incompatibility
 – Metadata exists in various formats specific for media types, applications, product vendors, ...
 – Exchange of metadata is difficult

• Broad range of metadata
 – Metadata exists on various levels, covering all is expensive

• Metadata economy
 – How much of the metadata will be used?
 – When to create metadata?
Selected Metadata Standards

- Dublin Core Metadata Initiative (DCMI) & PRISM (Publishing Requirements for Industry Standard Metadata)
 - Oriented towards books, magazines, journals etc.
 - Uses XML, RDF, Dublin Core
 - www.prismstandard.org
- ONIX (Online Information Exchange)
 - For books: http://www.editeur.org/onix.html
- MUZE (www.muze.com)
 - De-facto industry standard
 - Company collecting large database of recorded music
- TV Anytime (www.tv-anytime.org)
 - Devoted to audio-visual services making use of local mass-storage
 - Focus on: Electronic Program Guide and user profiles
- EBU P/Meta
 - Devoted to material exchange between broadcasting stations

5 Multimedia Content Description

5.1 Metadata: Concepts and Overview
5.2 RDF: XML Metadata
5.3 Metadata for Authoring: AAF & SMPTE Standards
5.4 Generic Metadata Framework: MPEG-7
5.5 Automatic Metadata Extraction

Literature:
www.w3c.org/RDF
Resource Description Framework RDF

- Language for representing information about resources in the WWW
 - W3C's Semantic Web activity

- Resource: Anything that can be identified by a URI (e.g. all Web pages)
- Property: An attribute of a described thing which can take on specific values
- Statement: A triple consisting of
 - Subject: Some resource to be described
 - Predicate: A property of the subject
 - Object: A specified value
- Properties, values and statements are resources themselves,
 - i.e. can be identified by a URI
 - i.e. can be subject to further description

RDF Example

- http://www.example.org/index.html has a creator whose value is John Smith
- http://www.example.org/index.html has a creation-date whose value is August 16, 1999
- http://www.example.org/index.html has a language whose value is English
RDF/XML Example

- RDF/XML is an XML language for representing descriptions

```xml
<?xml version="1.0"?>
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:dc="http://purl.org/dc/elements/1.1/"
  xmlns:exterms="http://www.example.org/terms/">
  <rdf:Description
    rdf:about="http://www.example.org/index.html">
    <exterms:creation-date>August 16, 1999</exterms:creation-date>
    <dc:language>en</dc:language>
    <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
  </rdf:Description>
</rdf:RDF>
```

5 Multimedia Content Description

5.1 Metadata: Concepts and Overview
5.2 RDF: XML Metadata
5.3 Metadata for Authoring: AAF & SMPTE Standards
5.4 Generic Metadata Framework: MPEG-7
5.5 Automatic Metadata Extraction

Literature:
AAF Developer Overview, available at www.aafassociation.org
Integration of Digital Media in Video Production

• Example: Putting together all audio elements for a film soundtrack
 – music tracks, ambient sound tracks, performer’s synchronized sound, ...
• Multimedia authoring applications
 – Usually use proprietary data formats
 – Important metadata related to creation process (e.g. compositional metadata) kept only in proprietary formats
• Standards in the broadcasting industry
 – SMPTE (Society of Motion Picture and Television Engineers)
 – EBU (European Broadcasting Union)
 – Working on hardware-based standards for a long time
• EBU/SMPTE Task Force for Harmonized Standards for the Exchange of Program Material as Bit Streams (1996-1999)
 – Results further developed into Advanced Authoring Format (AAF)
 – AAF: Industry-driven, cross-platform, multimedia file format

Types of Metadata Covered in AAF

• Identification and Location Metadata
 – comprises all forms of metadata that can be used to uniquely identify an item
• Administration Metadata
 – definitions of rights, user access, security classifications, encryption, audience listings and other business information.
• Interpretive Metadata
 – partly for human-orientated metadata types such as names, artists, organisations and classification.
• Parametric Metadata
 – signal coding parameters, device characteristics, sensor parameters (e.g. focal length) plus device storage and streaming parameters
• Process Metadata
 – includes all items that describe how essence is assembled, such as editing and compositional metadata
• Relational Metadata
 – describes how information is related
• Spatio-Temporal Metadata
 – describes places and time including angles, geo-spatial coordinates, dates, creation times, event times, delays and durations
Interchanging Compositions with AAF

AAF Object-Oriented Software Architecture
5 Multimedia Content Description

5.1 Metadata: Concepts and Overview
5.2 RDF: XML Metadata
5.3 Metadata for Authoring: AAF & SMPTE Standards
5.4 Generic Metadata Framework: MPEG-7
5.5 Automatic Metadata Extraction

Literature:
www.chiariglione.org
B. S. Manjunath, Philippe Salembier, Thomas Sikora:
Introduction to MPEG-7, Wiley 2002

MPEG-7

• Moving Picture Experts Group (MPEG)
 = ISO/IEC JTC1/SC29/WG11 “Moving Pictures and Audio”
 Main Web presence now: www.chiariglione.org
• MPEG-7 “Multimedia Content Description Interface”
 “... a standard for describing the multimedia content data that supports
 some degree of interpretation of the information’s meaning, which can be
 passed onto, or accessed by, a device or a computer code. MPEG-7 is not
 aimed at any one application in particular; rather, the elements that MPEG-7
 standardizes support as broad a range of applications as possible.”
• Version 1 developed in 1996 – 2001
• Version 2 said to be under development
• Industrial uptake rather slow
 – Very ambitious standard
Parts of the MPEG-7 Standard

- MPEG-7 Systems
- MPEG-7 Description Definition Language (DDL)
 - Descriptors (D) define the syntax and semantics of each feature (metadata element)
 - Description schemes (DS) specify syntax and semantics of the relationships between their components, which may be Descriptors or Description Schemes
 - DDL allows the creation of Ds and DSs
 » XML-based language with some small extensions to XML Schema
- MPEG-7 Visual
- MPEG-7 Audio
- MPEG-7 Multimedia Description Schemes
- MPEG-7 Reference Software
 - eXperimentation Model XM

Types of Metadata Covered in MPEG-7

- Technical Metadata:
 - Form (data format, representation parameters like resolution, colour depth...)
 - For live captured material: Time and date of original occurrence
 - Technical parameters of capture (e.g. aperture, exposure etc. for images)
- Content Description Metadata (main focus of MPEG-7):
 - Low level:
 » Video: Shapes, positions, trajectories etc. of objects
 ("an object with mainly yellow colour fitting into a box moving from left to right")
 » Audio: Key, mood, tempo, tempo changes, position in sound space, ...
 - High level:
 » Video: “A post car arrives, entering the scene from the left side.”
 » Audio: Title, composer, etc. or, e.g.: “barking dog”
- Additional information:
 - Digital rights, classification, context, further links, ...
Application Areas of MPEG-7

- Architecture, real estate, and interior design (e.g., searching for ideas).
- Broadcast media selection (e.g., radio channel, TV channel).
- Cultural services (e.g., virtual museums).
- Digital libraries (e.g., image catalogue, musical dictionary).
- Education (e.g., repositories of multimedia courses).
- Home Entertainment (e.g., home video management).
- Investigation services (e.g., human characteristics recognition, forensics).
- Journalism (e.g., searching for video footage of political event).
- Multimedia directory services (e.g., yellow pages, Tourist information).
- Multimedia editing (e.g., personalized electronic news service, media authoring).
- Remote sensing (e.g., cartography, ecology, natural resources management).
- Shopping (e.g., searching for clothes that you like).
- Surveillance (e.g., traffic control, surface transportation).
- ...
Examples of Advanced Queries

- Play a few notes on a keyboard and retrieve a list of musical pieces similar to the required tune, or images matching the notes in a certain way, e.g. in terms of emotions.
- Draw a few lines on a screen and find a set of images containing similar graphics, logos, ideograms,...
- Define objects, including colour patches or textures and retrieve examples among which you select the interesting objects to compose your design.
- On a given set of multimedia objects, describe movements and relations between objects and so search for animations fulfilling the described temporal and spatial relations.
- Describe actions and get a list of scenarios containing such actions.
- Using an excerpt of Pavarotti’s voice, obtaining a list of Pavarotti’s records, video clips where Pavarotti is singing and photographic material portraying Pavarotti.

From: MPEG-7 Overview

Organization of Multimedia Description Tools

<table>
<thead>
<tr>
<th>Content organization</th>
<th>Collections</th>
<th>Models</th>
<th>User interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td>Navigation & Access</td>
</tr>
<tr>
<td>Action classification</td>
<td></td>
<td></td>
<td>Index</td>
</tr>
<tr>
<td>Content description</td>
<td></td>
<td></td>
<td>Views</td>
</tr>
<tr>
<td>Structural aspects</td>
<td>Semantic aspects</td>
<td></td>
<td>Variations</td>
</tr>
</tbody>
</table>

Basis
- Schema tools
- Links&Media localization
- Basic tools
- Basic data types
Structural Content Description: Segments

- A segment represents a section of an audio-visual content item.
- The Segment DS is an abstract class (in the sense of object-oriented programming).
- It has nine major subclasses:
 - Multimedia Segment DS
 - AudioVisual Region DS
 - AudioVisual Segment DS
 - Audio Segment DS
 - Still Region DS
 - Still Region 3D DS
 - Moving Region DS
 - Video Segment DS
 - Ink Segment DS
 » relating to electronic ink from pen, smartboard etc.

Examples of Segments
Example of a Segment Tree

SR1:
- Creation, Usage meta information
- Media description
- Textual annotation
- Color histogram, Texture

SR2:
- Shape
- Color Histogram
- Textual annotation

SR3:
- Shape
- Color Histogram
- Textual annotation

SR4:
- Shape
- Color Histogram
- Textual annotation

SR5:
- Shape
- Textual annotation

SR6:
- Color Histogram
- Textual annotation

Background

Foreground

Source: MPEG-7 & R. Klamma

Video Segmentation with Moving Regions

Moving Region: Player
Moving Region: Ball
Moving Region: Goal Keeper
Still Region: Goal
Example: Summary as Hierarchy of Key Frames

Variations

- Components of a complex multimedia object may exist in various variations (different resolutions, languages, etc.)
 - Server or proxy server should be able to select the appropriate variation
MPEG-7 Visual Description Tools

- Basic structures and Descriptors for the following basic visual features:
 - Color, Texture, Shape, Motion, Localization, and Face recognition
 - Each category consists of elementary and sophisticated Descriptors

- Basic structures:
 - Grid layout, time series, multiple (2D/3D) view, spatial 2D coordinates, temporal interpolation

- Shape descriptors:
 - Region shapes and contour shapes
 - Extraction methods
 - Able to handle complex shapes
 - Robust to minor deformations, perspective transformations, occlusions etc.
 - Compact and efficient

Examples for Shape Descriptors

Region shapes:

Contour shapes:
MPEG-7 Audio Low-Level Descriptors

- Structures:
 - Single scalar value
 - Series of sampled values
- Features:
 - See figure

Spectral Analysis with AudioSpectrumEnvelope
Data-Reduced Spectral Representation

- Reconstruction of sonogram using a compact representation of 10 vectors
 - required storage space \(10(M+N)\) values
 - \(M\) number of time points, \(N\) number of spectrum bins

MPEG-7 Audio High-Level Descriptors

- Audio signature
 - Statistical summary of spectral flatness descriptor
 - Fingerprinting, identification of audio content
- Musical instrument timbre
- Melody description
 - MelodyContour (terse, efficient)
 - MelodySequence
 - Example: http://www.musicline.de/ --> Melodiesuche
- General sound recognition and indexing
 - Probabilistic classifiers for sound classes
- Spoken content
 - Output and intermediate results of Automatic Speech Recognition (ASR)
5 Multimedia Content Description

5.1 Metadata: Concepts and Overview
5.2 RDF: XML Metadata
5.3 Metadata for Authoring: AAF & SMPTE Standards
5.4 Generic Metadata Framework: MPEG-7
5.5 Automatic Metadata Extraction

Literature:
www.virage.com
Virage VideoLogger

Techniques used by Virage VideoLogger

- Signal analysis algorithms to generate keyframes for visual overview
- Speech-to-text transcription
- Sound identification
- Speaker identification
 - voice identification and face identification
- Analysis of embedded textual information:
 - close captioning, teletext
- External metadata:
 - PowerPoint presentations
 - EDLs
 - GPS data
 - transcripts
- Manual annotation:
 - Effective user interface (hot keys etc.)