Outline (Preliminary)

Introduction and Motivation

2. Digital Rights Management

3. Cryptographic Techniques

Electronic Payment Systems 4.

5. Multimedia Content Description

6. Streaming Architectures

Multimedia Content Production and Management 7.

8. Commercial Streaming Systems: An Overview

Web Radio and Web TV

10. Signaling Protocols for Multimedia Communication

11. IP Telephony

12. Multimedia Conferencing

Part I:

Content-Oriented

Base Technologies

Part II:

Multimedia

Distribution Services

Part III: Conversational Multimedia Services

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 1

6 Streaming Architectures

- 6.1 Streaming: Basic Terminology
- 6.2 High-Level Streaming Architecture
- Real-Time Data Transport * 6.3
- 6.4 Scalability and Multicast *

Literature:

David Austerberry: The Technology of Video & Audio Streaming,

Focal Press 2002

Gregory C. Demetriades: Streaming Media, Wiley 2003

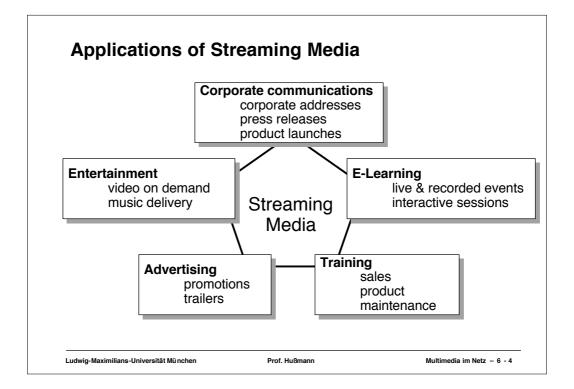
Tobias Künkel: Streaming Media – Technologien, Standards,

Anwendungen, Addison-Wesley 2001

* Hinweis: Überlappung mit "Rechnernetze II" (Hegering)

Ludwig-Maximilians-Universität München

Prof. Hußmann


Streaming, Streaming Media

- Streaming media is the term used to describe the real-time delivery of moving images, moving text and sound, over the internet.
- Delivery types for audio and video content:
 - Download and Play: Content must be downloaded completely to the client before it can be played
 - Progressive Download: Playback is started while download is still in progress. Download rate independent of program bit rate.
 - True Streaming: Delivered media is viewed/listened in "real-time".
 - » Playback takes place with roughly the same rate as delivery of data
 - » Delay between send and receive event of data packet kept small
- · Subtypes of True Streaming:
 - Static File Streaming: Delivery of pre-recorded media files. Often also called on-demand delivery (e.g. Video on Demand)
 - Live Streaming: Source of delivered media is not pre-recorded but fed into the server in real-time. Examples: Webcast of live events, Web radio
 - Static file streaming enables a higher degree of interactivity

Based on material from www.streamingalliance.org

Ludwig-Maximilians-Universität München

Prof. Hußmann

Session

- A session is an association between communicating parties, which
 - Persists over a limited time span
 - Incorporates at least two parties
 - May comprise a large number of communication connections of different characteristics
- · Examples of sessions:
 - Movie streamed to consumer, consisting of audio and video parts
 - Multimedia conference among five participants, consisting of audio and video source from each of the participants (plus possibly some global information)
- · Session awareness at which levels?
 - At application level: unavoidable
 - At network level: possible
 - » Requires specific protocols

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 5

Network Feature vs. End System Application

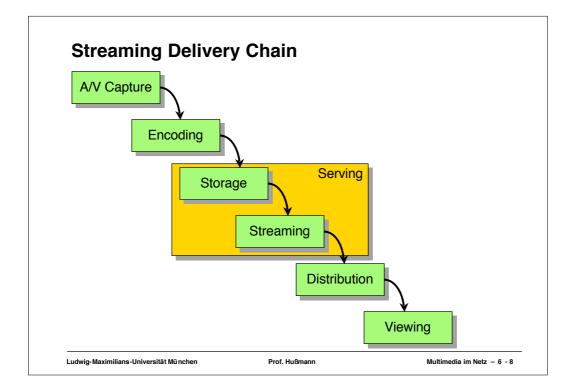
- · Traditional telecommunication networks:
 - End systems are "dumb" (classical phone sets)
 - All advanced features (e.g. multimedia sessions) are realized in the network
 - » Upgrade of network equipment
 - » Upgrade of signalling protocols
- Internet:
 - End systems are universal computers
 - Main network function (IP routing) is extremely simple
 - Advanced features are mainly realized by software on end systems
 - Additional protocols
 - » "end-to-end" for communication among end system software
 - » triggering specific behaviour of the network (e.g. resource reservation in routers) —> difficult to deploy, therefore rare to find

Ludwig-Maximilians-Universität München

Prof. Hußmann

6 Streaming Architectures

- 6.1 Streaming: Basic Terminology
- 6.2 High-Level Streaming Architecture
- 6.3 Real-Time Data Transport
- 6.4 Scalability and Multicast


Literature:

David Austerberry: The Technology of Video & Audio Streaming, Focal Press 2002

Gregory C. Demetriades: Streaming Media, Wiley 2003

Ludwig-Maximilians-Universität München

Prof. Hußmann

Encoding

- · Format conversions
 - E.g. analog/digital conversion
 - E.g. downscaling of picture size
- · Compression
 - Adequate for player capabilities and typical transmission bandwidth
- Indexing
 - Analysing internal structure
- · Metadata creation
 - Possibly including digital rights specification

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 9

Serving

- Storage
 - Live: only buffering and archiving
 - Static files: archive management, retrieval
- Streaming
 - Request-response driven similar to Web server
- · Interactivity
 - In static files:
 - » VCR-like control (PLAY, STOP, PAUSE, FFWD, REW)
 - » Random access based on various criteria
 - In structured (mostly static) material archives:
 - » Hyperlinks in A/V material ("hypervideo")
 - » Web-like technology: Video-Web, links to arbitrary streaming sources

Ludwig-Maximilians-Universität München

Prof. Hußmann

Distribution

- · Key topic: Quality of Service (QoS)
 - Determining realizable bandwidth, delay, jitter
 - See "Rechnernetze II"
- · Key concepts:
 - Overprovisioning
 - Detailed reservations ("Integrated Services", reservation protocol RSVP)
 - » Difficult to scale to large numbers of users
 - Traffic classes ("Differentiated Services")
 - » Difficult to control access to privileges
 - Resource management layer
 - Technology-specific solutions
 - » E.g. ATM (Asynchronous Transfer Mode)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 11

6 Streaming Architectures

- 6.1 Streaming: Basic Terminology
- 6.2 High-Level Streaming Architecture
- 6.3 Real-Time Data Transport
- 6.4 Scalability and Multicast

Literature:

David Austerberry: The Technology of Video & Audio Streaming, Focal Press 2002

Stephan Rupp, Gerd Siegmund, Wolfgang Lautenschlager: SIP – Multimediale Dienste im Internet. dpunkt 2002

Ludwig-Maximilians-Universität München

Prof. Hußmann

IP and TCP

- · Internet Protocol
 - Network communication protocol (ISO layer 3)
 - Packets transferred from address to address (through routers)
 - Main problems:
 - » Variable network latency
 - » Packet order on arrival may be different than on sending
 - » Packets may be lost
- Transport Control Protocol (TCP)
 - Connection establishment (by "three-way handshake")
 - Sequencing of bytes with forwarding acknowledgement number
 - Non-acknowledged bytes are re-transmitted after a defined time period
 - Flow control
- · For audio/video streaming:
 - Retransmissions (and associated delays) are harmful
 - Lost packets can be tolerated to some extent
 - TCP not adequate for data transport

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 13

UDP

- User Datagram Protocol (UDP)
- · Extremely simple transport protocol over IP
 - Connectionless (TCP: connection-oriented)
 - Unreliable (TCP: reliable)
 - No flow control (TCP: has flow control)
- · Contents of a UDP datagram:
 - Ports used by application program
 - Checksum
- · Basically adequate for media data transport
 - Very efficient, protocol overhead of TCP avoided
 - Flow control and handling of packet loss have to be handled by higher protocol layer

Ludwig-Maximilians-Universität München

Prof. Hußmann

Streaming with HTTP?

- · Theoretically possible
 - Client requests next slice of audio/video information from server
 - Server responds with audio/video data
 - Popular in simple streaming applications
 - » e.g. MP3-Streaming with ShoutCast, Live365
- · Main problem
 - HTTP usually run over TCP
 - Large overhead for ensuring correct transmission
- · Consequence:
 - Specialized streaming protocols

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 15

Real-Time Transport Protocol RTP

- · Transport protocol specifically developed for streaming data
 - IETF (Internet Engineering Task Force) RFC (Request for Comments) 1889
- · RTP packets contain
 - Sequence number
 - Time stamp
 - Identification of sender and destination
- · Very important:
 - RTP does not at all change the way how IP packets are transferred in the network!
 - To achieve "Quality of Service", additional network technologies are required (see above)
- · RTP used by:
 - Apple QuickTime architecture
 - RealSystems streaming architecture

Ludwig-Maximilians-Universität München

Prof. Hußmann

RTP Packets and Other Protocols

RTP 20 – 150 Bytes

12 Byte Header Payload Data

Or multiple RTP packets

8 Byte Header

ΙP

20 Byte Header

- · IP Header:
 - Source address, destination address, length, time to live, ...
- · UDP Header:
 - Port numbers (source and target processes), length, checksum

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 17

RTP Header Format

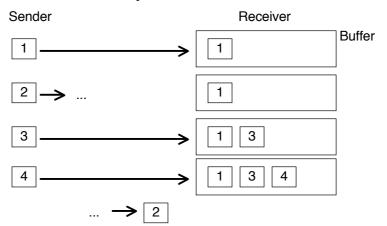
Payload Type (7 Bit)	Sequence Number (16 Bit)	
Timestamp (32 Bit)		
Synchronization Source (SSRC) Identifier (32 Bit)		
Contributing Source (CSRC) Identifier (32 Bit) (repeated)		

- · Payload Type: Source coding (codec used)
- SSRC: Identification of sending data source, defined basis for sequence numbers and time stamps
- CSRC (optional): Identifications for original data sources which have been *mixed* together to form the synchronization source

Ludwig-Maximilians-Universität München

Prof. Hußmann

Buffer Size Allocation

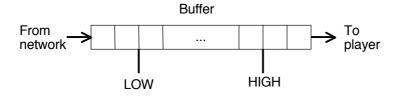

- · Streaming quality relies on
 - Features of the network, and
 - Adaptive codecs on client/server side
 - E.g. intelligent use of buffering
- · Constant delay does not require buffering
- · Buffers are necessary to deal with jitter
 - Varying network delays
- · Estimation of buffer sizes
 - Based on preliminary test transmissions
 - Adaptively during content transmission
- · Problem:
 - Keep buffers small to achieve proper "real-time"
 - Avoid "buffer underrun" in case of exceptionally long delays

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 19

Jitter and Loss Compensation


- · Options for application on receiver side:
 - Wait (not adequate), repeat last packet (1), interpolate (between 1 and 3)
 - Missing audio information is difficult, missing video can be compensated

Ludwig-Maximilians-Universität München

Prof. Hußmann

Adaptive Transmission Rate Control

- · Application-level mechanism
- · Define "low" and "high" thresholds on buffer
- · Communication between client and server
 - Lower transmission rate when high threshold is reached
 - Increase transmission rate when low threshold is reached

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 21

Real-Time Control Protocol RTCP

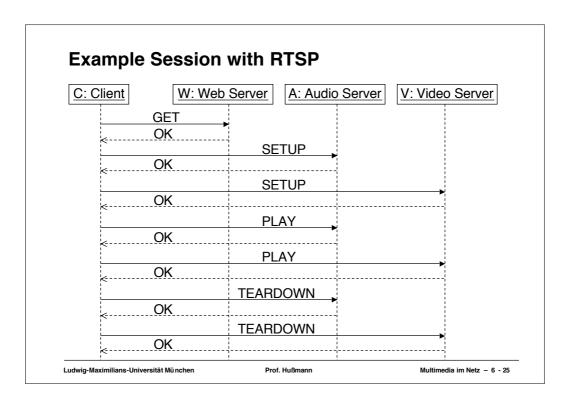
- · RTCP controls the transmission (not the setup of connection)
- RTCP periodically sends monitoring information to all participants in a streaming session
- · Main functions of RTCP:
 - Feedback on QoS of transmission
 - » Information for adaptive codecs, e.g. whether problem is local or global
 - Identification of sender by "canonical name"
 - » Helpful when synchronization source changes
 - » Supports lip synchronization between audio and video
 - Number of participants in a session
 - » Adaptation of sending rate of RTCP control information to number of participants, to avoid network overload
 - Transmission of additional information, e.g. names of session participants

Real Time Streaming Protocol RTSP

- Client-server multimedia presentation protocol, designed specifically for streamed media
 - IETF (Internet Engineering Task Force) RFC (Request for Comments) 2326 ("MMUSIC" work group)
 - » February 1998, draft revision February 2004
 - "The Internet VCR remote control protocol" (www.rtsp.org)
 - Independent of the use of RTP for transport
 - Syntactically similar to HTTP 1.1 (carried over TCP, later also UDP or TLS)
- · Main operations supported by RTSP:
 - Retrieval of media from media server
 - Invitation of a media server to a conference
- Key terminology
 - Aggregate control (e.g. for audio & video)
 - Server control (clients should be able to stop streaming from a server)
 - Transport & capability negotiation (e.g. disallowing a "seek" function)

Ludwig-Maximilians-Universität München

Prof. Hußmann


Multimedia im Netz - 6 - 23

Main Methods of RTSP

- · SETUP:
 - Causes the server to allocate resources for a stream and create a RTSP session.
- PLAY:
 - Starts data transmission on a stream allocated via SETUP
 - Fast forward (scale ratio parameter)
- · PAUSE:
 - Temporarily halts a stream without freeing server resources.
- · REDIRECT:
 - Indicates that the session should be moved to new server / location
- · PING:
 - Prevents the identified session from being timed out.
- TEARDOWN:
 - Frees resources associated with the stream. The RTSP session ceases to exist on the server.

Ludwig-Maximilians-Universität München

Prof. Hußmann

Microsoft Media Server MMS

- Microsoft Technology for transmission of data packets and control messages from server to client
 - Based on TCP
- · Protocol Rollover: Server tries the following protocols in sequence
 - MMSU: Microsoft Media Server Protocol/UDP
 - MMST: Microsoft Media Server Protocol/TCP
 - HTTP (may be successful in Firewall configurations)
- · MSBD (Media Stream Broadcast Distribution Protocol):
 - Earlier solution for client-server connections
 - Currently limited in client numbers

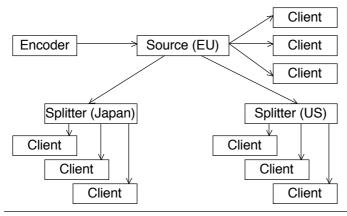
6 Streaming Architectures

- 6.1 Streaming: Basic Terminology
- 6.2 High-Level Streaming Architecture
- 6.3 Real-Time Data Transport
- 6.4 Scalability and Multicast

Literature:

David Austerberry: The Technology of Video & Audio Streaming, Focal Press 2002

Gregory C. Demetriades: Streaming Media, Wiley 2003


Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 6 - 27

Splitting

- · Video servers are limited in capacity
- · Assuming clients at spatially distant locations
 - Intermediate, forwarding server is useful: "splitter"

Ludwig-Maximilians-Universität München

Prof. Hußmann

Content Delivery Networks

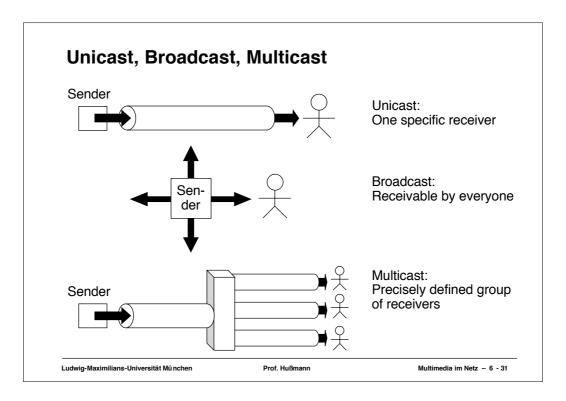
- · "Overlay server infrastructure"
 - Network of centrally operated Web and streaming servers
 - Geographically distributed, present in main ISP networks
 - Flexibly used for content from various sources
- · Content delivery as a service
 - Content delivery service provider owns server infrastructure
 - Content owner pays for having content delivered to customers
- · Examples:
 - Akamai (e.g. delivered CNN news during U.S. elections)
 - » Runs 14000 servers in 1100 networks spanning 65+ countries
 - VitalStream
 - » Specialized in media streaming

Ludwig-Maximilians-Universität München

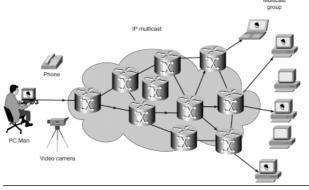
Prof. Hußmann

Multimedia im Netz - 6 - 29

Example of Administration Interface


· VitalStream MediaConsole

MediaConsole Media Package Manager Screenshot


Ludwig-Maximilians-Universität München

Prof. Hußmann

IP Multicast

- · Multicast relatively easy to integrate in routers
- IP address class D (224.0.0.0 through to 239.255.255.255) reserved for multicast (multicast groups)
- Registration/deregistration with IGMP (Internet Group Management Protocol)

- Reliable multicast: e.g. "Mbone" overlay network
- Multicast still rarely used in today's Internet

Ludwig-Maximilians-Universität München

Prof. Hußmann

IP Version 6

- · Next generation of the IP protocol
- · 128 Bit address space
 - Intended to relieve shortage of IP v4 addresses
- · Built-in support for multicast
 - Specific multicast addresses
- Uptake of IP version 6 is (strangely) slow

Ludwig-Maximilians-Universität München

Prof. Hußmann