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3.3 Graphical Design of Game Characters with Flash
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Source code for all examples at www.friendsofed.com
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The Story and Situation for a New Game

“The sound of the screaming alarms aboard the space 
cruiser abruptly awoke Space Kid, our ultimate hero of 
the futuristic universe, from his cryogenic nap. When 
our hero  investigated, it was obvious his worst fears 
were now true. His loyal sidekick, teddy, had been 
bear-napped from the comfort of his own sleep 
chamber.
Immediately Space Kid knew there could only be one 
ruthless and vile enemy capable of committing such an 
atrocity: his longtime arch nemesis, Lord Notaniceguy.
Armed only with his trusty ray gun, Super Kid changes 
course for Quexxon Sector-G. Although our brave hero 
is fully aware he’s falling for the bait in a trap, he must 
save Teddy.”
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Character Brainstorming (1)
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Character Brainstorming (2)
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The Final Character
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The Design Process

1. Create rough sketches of many different visual interpretations for the 
character (best with paper and pencil) 
– Brainstorming technique: Do not yet select!

2. Select among the gallery of characters according to compatibility with 
story, credibility, humour/seriousness, ...

3. Create rough sketches (paper and pencil) for the various animation 
sequences needed, e.g. run, jump, shoot, ...
– Here usage of the authoring system can help already

4. Create optimized computer graphics for an “idle” animation.
5. Realize the animation sequences

– Make sure that all sequences start and end with the idle position
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Rough Sketch for “Run” Animation
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The Enemies...

• Lord Notaniceguy’s space slugs...
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Complexity of Polygon Drawings

• Normal drawings in vector graphics programs (like Flash)
– Every line has a vector point on each end
– Every time a line makes a sharp bend, at least one new vector point is 

needed
– Every time two lines intersect, yet another vector point is created

49 vector points
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Optimized Vector Drawings

4+7*4 = 32 vector points

Crosshair principle: avoid intersections

Flash: 
Use separate layers to draw lines which intersect. 
Keep each layer free of intersections.
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Optimizing a Comic Character
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Principles of (2D-)Animation

• Keyframes
– … well known to Flash users

• Squash and Stretch
– Shape of subject reacts to speed and force of movement

• Timing
– Timing of movement: Gives animation a sense of weight and gravity

• Anticipation, Action, Reaction, Overlapping Action
– Anticipation: Build up energy before a movement
– Reaction: Don’t simply stop, but show the process of stopping
– Overlapping: Hierarchy of connected objects moves in a complex way

• Arcs
– Every object follows a smooth arc of movement
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Animating a Bouncing Ball

• When the ball is going up, it is fighting the 
force of gravity and will therefore be 
slower than when it falls.

• On rise and fall, the ball is stretched to 
give the illusion it is travelling quickly. 
This effect should be more extreme on 
the fall.

• At the top of movement, the ball has a 
certain hang time.

• As soon as the ball hits the ground (and 
not before), it gets squashed horizontally.

• A shadow animation increases the optical 
illusion.

• Please note: These are exaggerations for 
the sake of a stronger illusion.
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An Animated Comic Character
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Physics and Animation

• Jumping character:
– Trajectory is computed by interactive program
– dx and dy values for updating the character’s position
– Jump may have different width and (not in the example game) height 

depending on user interaction

• Physics is controlled with code, not with animation
• Consequence für movement animations (like jump):

– Movements “as if staying on the ground”
– Character design provides one central point for the character 

» In the middle of the bottom
» Must be the same point across all animation phases
» Used to determine whether ground has been hit, whether we are falling 

off an edge, ...
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Continuity of Animation Sequences

idle

run 

Start and end picture
of the animation sequences
have to fit together

jump shoot
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Parallax/Multiplane Effect

• Parallax effect (game programming) / multiplane (animation):
– Move the background at different (slower) rate than the foreground
– Creates a sensation of depth

The same platform
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Billiard-Game Physics

• Typical problem:
– Two round objects moving at different speeds and angles hitting each other
– How to determine resulting speeds and directions?

• Example used here:
– Billiard game (of course)
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Ball-to-Wall Bounces, Simple Version
BALL_DIAMETER = 20;
BALL_RADIUS = BALL_DIAMETER/2;
TOP = table_mc._y-table_mc._height/2+BALL_RADIUS;
BOTTOM = table_mc._y+table_mc._height/2-BALL_RADIUS;
LEFT = table_mc._x-table_mc._width/2+BALL_RADIUS;
RIGHT = table_mc._x+table_mc._width/2-BALL_RADIUS;
BOUNCE = -1;
whiteBall_mc.vx = Math.random()*5+2; // horizontal velocity
whiteBall_mc.vy = Math.random()*5+2; // vertical velocity
whiteBall_mc.onEnterFrame = ballMove;
function ballMove() {

this._x += this.vx;
this._y += this.vy;
if (this._x>RIGHT) {

this._x = RIGHT; this.vx *= BOUNCE;
} else if (this._x<LEFT) {

this._x = LEFT; this.vx *= BOUNCE;
}
if (this._y>BOTTOM) {

this._y = BOTTOM; this.vy *= BOUNCE;
} else if (this._y<TOP) {

this._y = TOP; this.vy *= BOUNCE;
}

}
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Bounce and Friction

• Bouncing always takes away some part of energy
– Set BOUNCE to factor smaller than 1

• The surface of the table always absorbs some part of the energy and slows 
down the ball

– Reduce velocity by some factor each frame
– Constant DAMP

BALL_DIAMETER = ...
BOUNCE = -0.6;
DAMP = 0.99;
...
function ballMove() {
this.vx *= DAMP;
this.vy *= DAMP:
this._x += this.vx;
this._y += this.vy;
if (this._x>RIGHT) {

...
}
...

}
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Minimum Speed

• How to calculate the effective speed out of x and y velocities?

veff = vx 2 + vy 2

vx

vy
veff

MINSPEED = .1;
...
function ballMove() {

...
this.speed = Math.sqrt(this.vx*this.vx+this.vy*this.vy);
if (this.speed<MINSPEED) {

this.vx = 0;
this.vy = 0;
delete this.onEnterFrame;

}
}
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Cue Stick, Aiming
stick_mc.onEnterFrame = aim;
function aim() {

var dx = whiteBall_mc._x-_xmouse;
var dy = whiteBall_mc._y-_ymouse;
angle = Math.atan2(dy, dx);
this._rotation = angle*180/Math.PI;
this._x = _xmouse;
this._y = _ymouse;

}

dy

dx
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Shooting
function shoot() {

this._x = _xmouse;
this._y = _ymouse;
this.vx = this._x-this.oldx;
this.vy = this._y-this.oldy;
this.oldx = this._x;
this.oldy = this._y;
var dx = whiteBall_mc._x-this._x;
var dy = whiteBall_mc._y-this._y;
var dist = Math.sqrt(dx*dx+dy*dy);

dy
dx

cue_length/2

ball_diam/2

dist
dist = dx 2 + dy 2

cue_length = 200
ball_diam = 20

if (dist<110) {
whiteBall_mc.vx = this.vx;
whiteBall_mc.vy = this.vy;
whiteBall_mc.onEnterFrame
= ballMove;

this.onEnterFrame = aim;
}
}
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Switching Between Modes of Objects

• The ball switches between two states:
– “moving”: onEnterFrame handler assigned to ballMove()
– “standing still”: onEnterFrame handler deleted

• The cue stick switches between two states:
– “shooting”: onEnterFrame handler assigned to shoot()
– “aiming”: onEnterFrame handler assigned to aim() (default)

stick_mc.onEnterFrame = aim;
onMouseDown = function () {

stick_mc.onEnterFrame = shoot;
};
onMouseUp = function () {

stick_mc.onEnterFrame = aim;
};



Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 65

Little Tricks for Shooting...

• It is not sufficient to move the stick with the mouse during shooting at 
constant angle. Instead, the cue stick shall move back and forth on the 
line which was defined when aiming.
this._x = whiteBall_mc._x-Math.cos(angle)*dist;
this._y = whiteBall_mc._y-Math.sin(angle)*dist;

angle to keep fixed

mouse
position

distYdist

Xdist

sinangle = Ydist
dist

cosangle = Xdist
dist

dist

• At mouse down, add a test whether the stick is already in collision with 
the ball (which does not make sense):
onMouseDown = function () { ... Compute distance dist
if (dist>110)
stick_mc.onEnterFrame = shoot;

};
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Shooting, Final Version
function shoot() {

var dx = whiteBall_mc._x-_xmouse;
var dy = whiteBall_mc._y-_ymouse;
var dist = Math.sqrt(dx*dx+dy*dy);
this._x = whiteBall_mc._x-Math.cos(angle)*dist;
this._y = whiteBall_mc._y-Math.sin(angle)*dist;
this.vx = this._x-this.oldx;
this.vy = this._y-this.oldy;
this.oldx = this._x;
this.oldy = this._y;
var dx = whiteBall_mc._x-this._x;
var dy = whiteBall_mc._y-this._y;
var dist = Math.sqrt(dx*dx+dy*dy);
if (dist<110) {

whiteBall_mc.vx = this.vx;
whiteBall_mc.vy = this.vy;
whiteBall_mc.onEnterFrame = ballMove;
this.onEnterFrame = aim;

}
}



Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 67

Collision Detection Between Balls

• Two balls are able to collide.
– Collision detection as a separate entity from the two balls
– E.g. onEnterFrame handler on timeline

onEnterFrame = checkCollision;
function checkCollision() {
var dx = redBall_mc._x-whiteBall_mc._x;
var dy = redBall_mc._y-whiteBall_mc._y;
var dist = Math.sqrt(dx*dx+dy*dy);
if(dist<BALL_DIAMETER){
... collision detected ...

}
}
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Physics: Speed, Velocity, Mass, Momentum

• Speed:
– How fast is something moving (length/time)

• Velocity:
– Vector describing movement: speed + direction

• Mass:
– Basic property of object, depending on its material, leads under gravity to its 

weight

• Momentum (dt. Impuls):
– Mass x Velocity

• Principle of Conservation of Momentum (dt. Impulserhaltung):
– Total momentum of the two objects before the collision is equal to the total 

momentum after the collision.
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A Simple Case of Collision

• Two balls collide “head on”
• Balls have same size and same mass

v1

v2

v2
v1
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Placing Balls At Collision Time

This is a simplification compared to the actual physical laws.
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Physics of Collision, Step 1

Velocity of red ball 

Velocity of white ball 

Line of collision

We need to determine those
parts of the forces which
actually contribute to the
reaction, i.e. the projections
on the collision line
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Physics of Collision, Step 2

vx1

vx2

vy1

vy2

vx1 (old vx2) 

vx2 (old vx1)
vy1

vy2
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Physics of Collision, Step 3
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Computing Step 1

Velocity of red ball 

Velocity of white ball 

dy

dx

var angle =
Math.atan2(dy,dx);
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Computing Step 2, Part 1

vx1

vx2

vy1

vy2

Counterclockwise rotation
of vector (x, y):
x1 = cos(α) ⋅ x + sin(α) ⋅ y

y1= cos(α) ⋅ y − sin(α) ⋅ x

var angle =
Math.atan2(dy,dx);

var cosa = Math.cos(angle);
var sina = Math.sin(angle);
var vx1 =
cosa*redBall_mc.vx +
sina*redBall_mc.vy;

var vy1 =
cosa*redBall_mc.vx -
sina*redBall_mc.vy;

... vx2, vy2
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Computing Step 2, Part 2

...
var tempvx = vx1;
vx2 = vx1;
vx1 = tempvx;
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Computing Step 3
Clockwise rotation
of vector (x, y):
x1= cos(α) ⋅ x − sin(α) ⋅ y

y1 = cos(α) ⋅ y + sin(α) ⋅ x

redBall_mc.vx =
cosa*vx1 - sina*vy1;

redBall_mc.vy =
cosa*vy1 + sina*vx1;

whiteBall_mc.vx =
cosa*vx2 - sina*vy2;

whiteBall_mc.vy =
cosa*vy2 + sina*vx2;

redBall_mc.onEnterFrame =
ballMove;

whiteBall_mc.onEnterFrame =
ballMove;


