
Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 38

3 Introduction to Computer Game Programming

3.1 Computer Games: History and Classification
3.2 Principles of Game Design
3.3 Graphical Design of Game Characters with Flash

Creating a Story and a Hero
Optimizing Vector Graphics
Principles of Animation

3.4 Physical Laws in Games

Literature:
K. Besley et al.: Flash MX 2004 Games Most Wanted,
Apress/Friends of ED 2004

Source code for all examples at www.friendsofed.com

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 39

The Story and Situation for a New Game

“The sound of the screaming alarms aboard the space
cruiser abruptly awoke Space Kid, our ultimate hero of
the futuristic universe, from his cryogenic nap. When
our hero investigated, it was obvious his worst fears
were now true. His loyal sidekick, teddy, had been
bear-napped from the comfort of his own sleep
chamber.
Immediately Space Kid knew there could only be one
ruthless and vile enemy capable of committing such an
atrocity: his longtime arch nemesis, Lord Notaniceguy.
Armed only with his trusty ray gun, Super Kid changes
course for Quexxon Sector-G. Although our brave hero
is fully aware he’s falling for the bait in a trap, he must
save Teddy.”

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 40

Character Brainstorming (1)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 41

Character Brainstorming (2)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 42

The Final Character

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 43

The Design Process

1. Create rough sketches of many different visual interpretations for the
character (best with paper and pencil)
– Brainstorming technique: Do not yet select!

2. Select among the gallery of characters according to compatibility with
story, credibility, humour/seriousness, ...

3. Create rough sketches (paper and pencil) for the various animation
sequences needed, e.g. run, jump, shoot, ...
– Here usage of the authoring system can help already

4. Create optimized computer graphics for an “idle” animation.
5. Realize the animation sequences

– Make sure that all sequences start and end with the idle position

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 44

Rough Sketch for “Run” Animation

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 45

The Enemies...

• Lord Notaniceguy’s space slugs...

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 46

3 Introduction to Computer Game Programming

3.1 Computer Games: History and Classification
3.2 Principles of Game Design
3.3 Graphical Design of Game Characters with Flash

Creating a Story and a Hero
Optimizing Vector Graphics
Principles of Animation

3.4 Physical Laws in Games

Literature:
K. Besley et al.: Flash MX 2004 Games Most Wanted,
Apress/Friends of ED 2004

Source code for all examples at www.friendsofed.com

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 47

Complexity of Polygon Drawings

• Normal drawings in vector graphics programs (like Flash)
– Every line has a vector point on each end
– Every time a line makes a sharp bend, at least one new vector point is

needed
– Every time two lines intersect, yet another vector point is created

49 vector points

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 48

Optimized Vector Drawings

4+7*4 = 32 vector points

Crosshair principle: avoid intersections

Flash:
Use separate layers to draw lines which intersect.
Keep each layer free of intersections.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 49

Optimizing a Comic Character

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 50

3 Introduction to Computer Game Programming

3.1 Computer Games: History and Classification
3.2 Principles of Game Design
3.3 Graphical Design of Game Characters with Flash

Creating a Story and a Hero
Optimizing Vector Graphics
Principles of Animation

3.4 Physical Laws in Games

Literature:
K. Besley et al.: Flash MX 2004 Games Most Wanted,
Apress/Friends of ED 2004

Source code for all examples at www.friendsofed.com

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 51

Principles of (2D-)Animation

• Keyframes
– … well known to Flash users

• Squash and Stretch
– Shape of subject reacts to speed and force of movement

• Timing
– Timing of movement: Gives animation a sense of weight and gravity

• Anticipation, Action, Reaction, Overlapping Action
– Anticipation: Build up energy before a movement
– Reaction: Don’t simply stop, but show the process of stopping
– Overlapping: Hierarchy of connected objects moves in a complex way

• Arcs
– Every object follows a smooth arc of movement

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 52

Animating a Bouncing Ball

• When the ball is going up, it is fighting the
force of gravity and will therefore be
slower than when it falls.

• On rise and fall, the ball is stretched to
give the illusion it is travelling quickly.
This effect should be more extreme on
the fall.

• At the top of movement, the ball has a
certain hang time.

• As soon as the ball hits the ground (and
not before), it gets squashed horizontally.

• A shadow animation increases the optical
illusion.

• Please note: These are exaggerations for
the sake of a stronger illusion.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 53

An Animated Comic Character

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 54

Physics and Animation

• Jumping character:
– Trajectory is computed by interactive program
– dx and dy values for updating the character’s position
– Jump may have different width and (not in the example game) height

depending on user interaction

• Physics is controlled with code, not with animation
• Consequence für movement animations (like jump):

– Movements “as if staying on the ground”
– Character design provides one central point for the character

» In the middle of the bottom
» Must be the same point across all animation phases
» Used to determine whether ground has been hit, whether we are falling

off an edge, ...

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 55

Continuity of Animation Sequences

idle

run

Start and end picture
of the animation sequences
have to fit together

jump shoot

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 56

Parallax/Multiplane Effect

• Parallax effect (game programming) / multiplane (animation):
– Move the background at different (slower) rate than the foreground
– Creates a sensation of depth

The same platform

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 57

3 Introduction to Computer Game Programming

3.1 Computer Games: History and Classification
3.2 Principles of Game Design
3.3 Graphical Design of Game Characters with Flash

Creating a Story and a Hero
Optimizing Vector Graphics
Principles of Animation

3.4 Physical Laws in Games

Literature:
K. Besley et al.: Flash MX 2004 Games Most Wanted,
Apress/Friends of ED 2004

Source code for all examples at www.friendsofed.com

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 58

Billiard-Game Physics

• Typical problem:
– Two round objects moving at different speeds and angles hitting each other
– How to determine resulting speeds and directions?

• Example used here:
– Billiard game (of course)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 59

Ball-to-Wall Bounces, Simple Version
BALL_DIAMETER = 20;
BALL_RADIUS = BALL_DIAMETER/2;
TOP = table_mc._y-table_mc._height/2+BALL_RADIUS;
BOTTOM = table_mc._y+table_mc._height/2-BALL_RADIUS;
LEFT = table_mc._x-table_mc._width/2+BALL_RADIUS;
RIGHT = table_mc._x+table_mc._width/2-BALL_RADIUS;
BOUNCE = -1;
whiteBall_mc.vx = Math.random()*5+2; // horizontal velocity
whiteBall_mc.vy = Math.random()*5+2; // vertical velocity
whiteBall_mc.onEnterFrame = ballMove;
function ballMove() {

this._x += this.vx;
this._y += this.vy;
if (this._x>RIGHT) {

this._x = RIGHT; this.vx *= BOUNCE;
} else if (this._x<LEFT) {

this._x = LEFT; this.vx *= BOUNCE;
}
if (this._y>BOTTOM) {

this._y = BOTTOM; this.vy *= BOUNCE;
} else if (this._y<TOP) {

this._y = TOP; this.vy *= BOUNCE;
}

}

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 60

Bounce and Friction

• Bouncing always takes away some part of energy
– Set BOUNCE to factor smaller than 1

• The surface of the table always absorbs some part of the energy and slows
down the ball

– Reduce velocity by some factor each frame
– Constant DAMP

BALL_DIAMETER = ...
BOUNCE = -0.6;
DAMP = 0.99;
...
function ballMove() {
this.vx *= DAMP;
this.vy *= DAMP:
this._x += this.vx;
this._y += this.vy;
if (this._x>RIGHT) {

...
}
...

}

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 61

Minimum Speed

• How to calculate the effective speed out of x and y velocities?

veff = vx 2 + vy 2

vx

vy
veff

MINSPEED = .1;
...
function ballMove() {

...
this.speed = Math.sqrt(this.vx*this.vx+this.vy*this.vy);
if (this.speed<MINSPEED) {

this.vx = 0;
this.vy = 0;
delete this.onEnterFrame;

}
}

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 62

Cue Stick, Aiming
stick_mc.onEnterFrame = aim;
function aim() {

var dx = whiteBall_mc._x-_xmouse;
var dy = whiteBall_mc._y-_ymouse;
angle = Math.atan2(dy, dx);
this._rotation = angle*180/Math.PI;
this._x = _xmouse;
this._y = _ymouse;

}

dy

dx

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 63

Shooting
function shoot() {

this._x = _xmouse;
this._y = _ymouse;
this.vx = this._x-this.oldx;
this.vy = this._y-this.oldy;
this.oldx = this._x;
this.oldy = this._y;
var dx = whiteBall_mc._x-this._x;
var dy = whiteBall_mc._y-this._y;
var dist = Math.sqrt(dx*dx+dy*dy);

dy
dx

cue_length/2

ball_diam/2

dist
dist = dx 2 + dy 2

cue_length = 200
ball_diam = 20

if (dist<110) {
whiteBall_mc.vx = this.vx;
whiteBall_mc.vy = this.vy;
whiteBall_mc.onEnterFrame
= ballMove;

this.onEnterFrame = aim;
}
}

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 64

Switching Between Modes of Objects

• The ball switches between two states:
– “moving”: onEnterFrame handler assigned to ballMove()
– “standing still”: onEnterFrame handler deleted

• The cue stick switches between two states:
– “shooting”: onEnterFrame handler assigned to shoot()
– “aiming”: onEnterFrame handler assigned to aim() (default)

stick_mc.onEnterFrame = aim;
onMouseDown = function () {

stick_mc.onEnterFrame = shoot;
};
onMouseUp = function () {

stick_mc.onEnterFrame = aim;
};

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 65

Little Tricks for Shooting...

• It is not sufficient to move the stick with the mouse during shooting at
constant angle. Instead, the cue stick shall move back and forth on the
line which was defined when aiming.
this._x = whiteBall_mc._x-Math.cos(angle)*dist;
this._y = whiteBall_mc._y-Math.sin(angle)*dist;

angle to keep fixed

mouse
position

distYdist

Xdist

sinangle = Ydist
dist

cosangle = Xdist
dist

dist

• At mouse down, add a test whether the stick is already in collision with
the ball (which does not make sense):
onMouseDown = function () { ... Compute distance dist
if (dist>110)
stick_mc.onEnterFrame = shoot;

};

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 66

Shooting, Final Version
function shoot() {

var dx = whiteBall_mc._x-_xmouse;
var dy = whiteBall_mc._y-_ymouse;
var dist = Math.sqrt(dx*dx+dy*dy);
this._x = whiteBall_mc._x-Math.cos(angle)*dist;
this._y = whiteBall_mc._y-Math.sin(angle)*dist;
this.vx = this._x-this.oldx;
this.vy = this._y-this.oldy;
this.oldx = this._x;
this.oldy = this._y;
var dx = whiteBall_mc._x-this._x;
var dy = whiteBall_mc._y-this._y;
var dist = Math.sqrt(dx*dx+dy*dy);
if (dist<110) {

whiteBall_mc.vx = this.vx;
whiteBall_mc.vy = this.vy;
whiteBall_mc.onEnterFrame = ballMove;
this.onEnterFrame = aim;

}
}

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 67

Collision Detection Between Balls

• Two balls are able to collide.
– Collision detection as a separate entity from the two balls
– E.g. onEnterFrame handler on timeline

onEnterFrame = checkCollision;
function checkCollision() {
var dx = redBall_mc._x-whiteBall_mc._x;
var dy = redBall_mc._y-whiteBall_mc._y;
var dist = Math.sqrt(dx*dx+dy*dy);
if(dist<BALL_DIAMETER){
... collision detected ...

}
}

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 68

Physics: Speed, Velocity, Mass, Momentum

• Speed:
– How fast is something moving (length/time)

• Velocity:
– Vector describing movement: speed + direction

• Mass:
– Basic property of object, depending on its material, leads under gravity to its

weight

• Momentum (dt. Impuls):
– Mass x Velocity

• Principle of Conservation of Momentum (dt. Impulserhaltung):
– Total momentum of the two objects before the collision is equal to the total

momentum after the collision.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 69

A Simple Case of Collision

• Two balls collide “head on”
• Balls have same size and same mass

v1

v2

v2
v1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 70

Placing Balls At Collision Time

This is a simplification compared to the actual physical laws.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 71

Physics of Collision, Step 1

Velocity of red ball

Velocity of white ball

Line of collision

We need to determine those
parts of the forces which
actually contribute to the
reaction, i.e. the projections
on the collision line

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 72

Physics of Collision, Step 2

vx1

vx2

vy1

vy2

vx1 (old vx2)

vx2 (old vx1)
vy1

vy2

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 73

Physics of Collision, Step 3

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 74

Computing Step 1

Velocity of red ball

Velocity of white ball

dy

dx

var angle =
Math.atan2(dy,dx);

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 75

Computing Step 2, Part 1

vx1

vx2

vy1

vy2

Counterclockwise rotation
of vector (x, y):
x1 = cos(α) ⋅ x + sin(α) ⋅ y

y1= cos(α) ⋅ y − sin(α) ⋅ x

var angle =
Math.atan2(dy,dx);

var cosa = Math.cos(angle);
var sina = Math.sin(angle);
var vx1 =
cosa*redBall_mc.vx +
sina*redBall_mc.vy;

var vy1 =
cosa*redBall_mc.vx -
sina*redBall_mc.vy;

... vx2, vy2

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 76

Computing Step 2, Part 2

...
var tempvx = vx1;
vx2 = vx1;
vx1 = tempvx;

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 3 - 77

Computing Step 3
Clockwise rotation
of vector (x, y):
x1= cos(α) ⋅ x − sin(α) ⋅ y

y1 = cos(α) ⋅ y + sin(α) ⋅ x

redBall_mc.vx =
cosa*vx1 - sina*vy1;

redBall_mc.vy =
cosa*vy1 + sina*vx1;

whiteBall_mc.vx =
cosa*vx2 - sina*vy2;

whiteBall_mc.vy =
cosa*vy2 + sina*vx2;

redBall_mc.onEnterFrame =
ballMove;

whiteBall_mc.onEnterFrame =
ballMove;

