Smart Graphics: Methoden 1

Vorlesung „Smart Graphics”
Andreas Butz, Otmar Hilliges
Mittwoch, 16. November 2005
Themen heute

• Generisches Modell eines SG systems
• Praktisches Beispiel: Generierung von 3D-Animationen
• Dabei insbesondere: hierarchische Planung
• System demo
Some typical elements of SG systems

- Strong simplification and generalization
- Often only some elements present
Concrete example: filmmaking

- Task: create a 3D animation for the explanation of a technical device
- Starting point: communicative goal
 - Example: show where the switch X is
- Intended result: 3D animation
 - E.g., showing where switch X is
(ctg: localize-object object :cylinder-group :duration 10)

Generation Techniques Illumination Output Shading mode
- Incremental
- Adaptive
- System trace
- Save ASCII
- Save GCL
- Save Keyframes
- Relative motions

Color effects
- Opacity effects
- Light effects
- Depth of field
- Abstraction
- Explosion
- Metagraphics

Default/No lights
- Spot lights
- Point lights
- Distant lights
- Ambient Light
- Obj. opacity

Viewangle
- Focus distance
- Lens aperture
- Obj. color
- Object LOD

- Photometric
- Phong-C
- Phong-GL
- Flat shaded

Presentation time
Generation time
Script time

Script Editor V.2.3

Elementary set: Script length

k-c
k-f
k-v

k-c
k-f
k-v
Concrete example: filmmaking

• Example system CATHI [Butz, 97]
Knowledge representation

• Representations can only capture part of the reality
 – Which aspects do we need to model?
 – At which level of detail do we need to model them?
 – Do we need qualitative or quantitative knowledge?
 – How do we want to process the knowledge?

• Different kinds of knowledge must be represented
 – Domain knowledge
 – Design knowledge
 – Knowledge about the user
Domain Knowledge

- Knowl. about things in the problem domain, e.g.,
 - Road network in a geographic database
 - Personal picture or music collection with metadata
 - Text and picture blocks for a magazine page
- Exchangeable if clearly separated from the rest
 - E.g., visualizations of different music collections
 - Route instructions in different cities
Domain Knowledge

- In the filmmaking example:
 - Geometries of objects + bounding boxes
 - Surfaces/colors of objects
 - Object groups and hierarchy
 - Preferred viewing directions of objects/groups
 - Trajectories of movements
Design Knowledge

- Knowledge how to structure graph. presentations, e.g.,
 - Rules of grid-based layout
 - Rules about the composition of an image
 - Rules about the composition of diagrams
- In the filmmaking example:
 - Formal „grammar“ of the film language
 - Rules about temporal and spatial compositions of shots
- Must be formal enough to be used by a machine!
- When exchanged, changes visual style
Example from CATHI: a formal grammar of the film language

- Rules for decomposing sequences into subsequences
- Reusable in different situations
- Querying calculations in the 3D model
- Details later
User model / preferences

• Knowledge about the user
 – Properties, such as level of expertise
 – Preferences, given implicitly or explicitly
 – Current context of the user
 – Also: capabilities of the output medium

• Examples
 – Previously bought items
 – Personal viewing preferences
 – Current resolution of the output screen
User preferences in CATHI

Stylistic preferences of the user

Graphical capabilities of the user’s machine (back in 1997!)
Reasoning

• Algorithms for:
 – Further refining the domain knowledge
 – Application of design knowledge

• Output of the reasoning process:
 – Complete structural description of the presentation

• Examples:
 – Route calculation on a road network
 – Layout of labels in a map
 – Layout of text blocks on a page
 – Specification of diagram elements

• Often the core of a SG system
Example: animation scripts
Parallel Decomposition

(defrule steady-shot (duration)
 (parallel
 (keep-camera duration)
 (keep-viewangle duration))))
Sequential Decomposition

(defrule blink-object (object duration)
 (sequential
 (invisible object (* 0.25 duration))
 (visible object (* 0.25 duration))
 (invisible object (* 0.25 duration))
 (visible object (* 0.25 duration))))
Incremental Decomposition

(defrule localize-object (object duration)
 (incremental
 (steady-shot (* 0.2 duration))
 (zoom-in object (* 0.4 duration))
 (blinking-shot object (* 0.4 duration))))
Why incremental generation?

Script generation → Rendering → Display

Script generation → Rendering → Display

Script generation → Rendering → Display
Current generation context

- Camera position and settings
- Base lighting
 - Effect lights
- Timing of the generation and presentation
- Object positions and properties
Conditional Decomposition

(defrule highlight-object (object duration)
 (if (feature color)
 (blink-object-color object duration)
 (blink-object-opacity object duration)))
Translation of elementary sequences

(defrule adjust-viewangle (from to duration)
 `(:adjust-viewangle
 :from ,from :to ,to
 :duration ,duration))

adjust-viewangle

(:adjust-viewangle
 :from 45 :to 20 :duration 5)
Generierung eines Skripts

- localize-object
 - steady-shot
 - keep-camera
 - keep-viewangle
 - zoom-in
 - keep-camera
 - zoom-viewangle
 - blinking-shot
 - keep-camera
 - keep-viewangle
 - blink-object
 - inv.
 - vis.
 - inv.
 - vis.

lm
Animation scripts in CATHI
Geometrical calculations

• Calculations in the 3D model
 – Camera positions
 – Object positions and movements
 – Obstructing objects
 – Exploded views
 – Metagraphical arrows
Computing camera positions

Intended viewing direction:
(front, front, left, up)
Finding obstructing objects
Positioning metagraphical arrows
Rendering

• Turn structural description into actual graphics
• Rule: no presentation without representation!
 – Structure of the output is internally represented
 – Each pixel has a “Meaning”
 – Presentation structure follows logical structure
 – User interactions can easily be interpreted
• Can be exchangeable for different output media
• Can be quite powerful
 – See NPR techniques
Rendering in CATHI

• Translation of animation scripts into different animation languages

• Real time output to Geomview
 – Just shaded polygons
 – Ambient, distant and point lights
 – Fast rendering enables AFL

• Batch output to Renderman
 – Textures and materials
 – Spot lights
 – Depth of field
 – Nice transparency
Reflection

• Analysis of the generated presentation
 – Either on the structure level
 – Or after rendering
• Influence back on the reasoning process
• Anticipation Feedback Loop (AFL)
• Can find errors in output
• Self-monitoring
• Very natural for humans
 – Bike riding
 – Speaking
Example: Reflection on a structure level

- Temporal adaptivity of CATHI’s generation process
- Choose simpler decomposition if time is scarce
Example: Reflection after rendering
In- and Output

• Output can be just graphical or coordinated with other media
 – Coordination by „higher authority“
 – Integration of other media in the planning process

• Input can be explicit or implicit
 – Checking boxes, setting user profile
 – Previous interactions with the system
 – Learned profile

• In CATHI: just checkboxes
Integration of CATHI into WIP

Presentation planning

Text
Graphics
Gestures

3D-Animation

Layout

Computer monitor
Some example generations of CATHI

Adaptation to different capabilities of the output medium