3 Information Visualization

3.1 Motivation and Examples
3.2 Basics of Human Perception
3.3 Principles and Terminology
3.4 Standard Techniques for Visualization
3.5 Further Examples

Space-Scale Diagrams
(Furnas & Bederson 95)
- User has a fixed-sized viewing window
- Moving it through 3D space yields all possible sequences of pan & zoom

Marti Hearst
Space-Scale Diagrams
(Furnas & Bederson 95)

- A point is transformed to a ray
- Circular regions become cones

Space-Scale Diagrams
(Furnas & Bederson 95)

- If you move the origin of the 2D plane, the properties of the original 2D picture do not change
- Therefore, the absolute angles between the rays should not be assigned any meaning
Space-Scale Diagrams
(Furnas & Bederson 95)

- We can think of this in terms of 1D too
- When zoomed out, you can see wider set of points

Marti Hearst

Space-Scale Diagrams
(Furnas & Bederson 95)

- Pure pan (a)
- Pure zoom (b)
- Pan and zoom keeping q in same position in the viewing window (c)
Semantic Zooming

- Geometric (standard) zooming:
 - The view depends on the physical properties of what is being viewed
- Semantic Zooming:
 - When zooming away, instead of seeing a scaled-down version of an object, see a different representation
 - The representation shown depends on the meaning to be imparted.

Semantic Zoom in MedioVis
http://hci.uni-konstanz.de/research/projects/mediovis
Arc Diagrams

- Visualization method for representing complex patterns of repetition in string data.
 - Arc diagrams scale efficiently for strings that contain many instances of the same subsequence.
 - Idea of visualizing only a subset of all possible pairs of matching substrings.
 - Highlight just the subsequences essential to understanding the string's structure.

Arc Diagrams - Basics

abcd111100001111abcd

1234567abcde1234567fghij1234567
Arc Diagram – Level of Detail

Applied to
- Music
- DNA
- Web pages
- Byte code

Arc Diagram applied to Music
Arc Diagram applied to Music
“für Elise”

- More details
 Martin Wattenberg. Arc Diagrams: Visualizing Structure in Strings
 IBM Watson Research Center, Technical report 2002-11

Thread Arcs

- Thread Arcs combine the chronology of messages with the branching tree structure of a conversational thread
- Benefits
 - Chronology
 - Relationships
 - Stability
 - Compactness
 - Attribute Highlighting
 - Scale
 - Interpretation/Sense

Bernard Kerr, 2003
Thread Arcs for Emails

- **Visualization**
 - Linear layout of message nodes connected by relationship arcs.
 - Each circular node represents a message in the thread.
 - *Chronology* of the thread is encoded by the position.
 - The width of a Thread Arc is a linear function of the size of the thread.
 - *Compact visualization* if height is constrained.

![Thread Arc Visualization](image)

The relationship between messages are clearer when arcs are draw above and below nodes (B).

Pseudo code for drawing a thread arc

To make a Thread Arc

1. sort all messages chronologically
2. find the generation depth of each message
3. for each message
 - if the message is the root message then
 - place the node at the starting position
 - don’t draw an arc
 - else
 - place the message to the right of the last message
 - if the message generation depth is odd then
 - draw an arc above the line to the message’s parent
 - else
 - draw an arc below the line to the message’s parent
4. next message
Space of Possible Thread Arcs (5 Messages)

<table>
<thead>
<tr>
<th>(n)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
<td>(\delta)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>(\omega)</td>
<td>(\kappa)</td>
<td>(\lambda)</td>
<td>(\mu)</td>
</tr>
<tr>
<td>(t)</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

Chronological Information in the Thread Arcs

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q
Example Email Client using Thread Arcs

Click stream Visualization

- Jeffrey Brainerd Barry Becker
 Case Study: E-Commerce Clickstream Visualization
 Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01)
- http://www.sims.berkeley.edu/courses/is247/s02/readings/brainerd.pdf
Click stream Visualization

Figure 1: Main ClickViz window showing hierarchical layout

• Brainerd et al.

Click stream Visualization

Figure 2. Circular layout. All the checkout pages are grouped (lower left). Red edges that emanate from the checkout pages to other parts of the site represent non-purchasers who are abandoning the checkout process.

• Brainerd et al.
Figure 3. Gender Differences: Males tend to navigate in specific, direct patterns, whereas women's navigation patterns include much more browsing, utilizing much more of the site.

Figure 4. Checkout process. Purchasers take a direct route through the checkout process, whereas non-purchasers show a more haphazard route, including self-edges and early abandonment, possibly indicating a confusing checkout process.
Hyperbolic Browser

- In the hyperbolic plane, the circumference and area of a circle grow exponentially with its radius
- Allocate each node a wedge of the hyperbolic plane
- The node recursively places all its children within an arc of that wedge
 - at an equal distance from itself
 - far enough out so the children are separated by at least a minimum distance
- Parallel lines diverge in hyperbolic geometry
 - each child’s wedge will span about the same angle as its parent’s
 - but not children’s wedges will overlap

Hyperbolic Tree Browser
(Lamping et al. 95)
Inxight’s Hyperbolic Browser

- Nice demos on the Web
 - www.inxight.com
 - www.thebrain.com

 » This is a variation on it that might be more interesting

 » Decides dynamically which subsets of the data to show
TheBrain.com

switching virtual desktops in 3D
3D Desktop - http://desk3d.sourceforge.net/
switching virtual desktops in 3D
Sun: Project Looking Glass
functional 3D-Desktop

Video ~ 6min

https://lg3d.dev.java.net/

Visualization on Mobile Devices

- Some common challenges
 - Small screen
 - Limited processing power
 - Limited interaction
 - Limited bandwidth to data source

Ludwig-Maximilians-Universität München
Prof. Hußmann
Mensch-Maschine-Interaktion II – 3 - 142
Rectangular Fish Eye View
saving bandwidth in transmission

 [http://www.icg.informatik.uni-rostock.de/Projekte/MoV/ Publications/ICIP99/](http://www.icg.informatik.uni-rostock.de/Projekte/MoV/Publications/ICIP99/)

Rectangular Fish Eye View
saving bandwidth in transmission

Figure 3: Rectangular fish eye view example

Figure 4: Generator Ret grid
Providing context for map navigation

- Baudisch, P. and Rosenholtz, R.
 Halo: A Technique for Visualizing Off-Screen Locations.
Providing context for map navigation