Smart Graphics: Milestones:
Text and UIs

Vorlesung „Smart Graphics“

Topics today

• Freeform UIs, Igarashi 03
• Smart Text Arvo 00
• Fluid Documents, Chang 00
• SCWM, Badros 00
Some more Freeform UIs

[Takeo Igarashi, SG03]

Path drawing for VR

- Interpretation of pen strokes by projection onto the ground in 3D
- Observation of additional constraints in 3D world
- "smart" interpretation filters out unwanted input

- Video
Flatland

- Whiteboard application for informal activities
- Interpretation of strokes
- Spatial constraints between objects (Video)

Characteristics of Freeform UIs

- Stroke-based Input
 - Richer than mouse-based dragging, since intermediate states make a difference
- Perceptual Processing
 - Humans perceive much richer information in drawings
- Informal Presentation
 - „imprecise“ visual representation suggests that also the computation is not precise
Motivation

- Character input on pen tablets and tablet PCs visually unsatisfying:
 - Pen strokes show jittery hand writing
 - Recognized characters are displayed abruptly and in different location
 - Visual interruption of the process
- Wanted: smooth transformation between pen strokes and recognized characters
 - No visual interruption in the process
 - Touching up recognized chars for correction
- Metaphor: self-organizing virtual ink
Recognition process

- Input: Sequences of strokes
 - Temporally distinct
 - Spatially overlapping
- Find groups of strokes
 - Queue all strokes and lag behind
 - Find most promising matches from the queue
 - Remove the corresponding strokes and continue
- Recognize stroke groups
 - Nearest neighbor matching
 - 50-dimensional feature space
 - Features: stroke length, slope, curvature, gap between strokes, scale invariant!

Morphing process

- Assign recognized strokes to lines in the recognized symbol
- Morph strokes to lines (stroke font)
 - Move if necessary
 - Scale if necessary
- Morph lines to character shapes (outline font)

Figure 1: Each morph has two conceptual stages. In the first stage, lines are blended into lines. In the second stage, lines are expanded to fill in all the font features.
Properties of the stroke font

• **Containment**: Each stroke character is entirely contained within its corresponding outline character.

• **Clarity**: Each character of the stroke font should be aesthetically pleasing as well as easily recognizable.

• **Correspondence**: The strokes comprising each character in the stroke font should correspond as closely as possible to the strokes of a typical hand-drawn rendition.

Design of the stroke font

• Skeletonization of the outline font
 – Containment OK!
 – recognizable
 – Contains unwanted details from serifs etc.

• Pruning of the resulting skeleton
 – Better, but...

• Hand-drawn font
 – Aesthetically most pleasing

Figure 2: A skeleton versus a hand-drawn stroke character for the symbol “T” (top row) and a close-up of a serif region (bottom row). The raw CAT skeleton on the left is pruned, resulting in the automatically generated stroke character shown at center. On the right, a hand-designed stroke character is shown. (Lines are overlaid on the filled outline character for reference.)
Post-processing strokes

(a) Splitting
(b) Joining

Figure 3: To create a one-to-one correspondence between strokes, the strokes of a character may be (a) split at the sharpest bend, or (b) joined where they are most nearly collinear.

Matchking strokes to stroke font lines

- Connect points on stroke to points on the line
- Evaluate energy function on connecting lines
 - Sum of the squares of distances
- Typically only few strokes → try all combinations
- Retain the match with minimal energy
Stage 1 morph

For each point on the outline font, find closest point on the stroke font.

Linearly interpolate points from stroke font to the outline font.

Intermediate shapes seem to gradually "grow" from the stroke font to the outline font.

Stage 2 morph

For each point on the outline font, find closest point on the stroke font.

Linearly interpolate points from stroke font to the outline font.

Intermediate shapes seem to gradually "grow" from the stroke font to the outline font.
Fluid Documents

Bay-Wei Chang

Motivation

• Annotate primary text with secondary information
 – Footnotes
 – Hyperlinks
 – Literature references
 – Index references

• Problem with current techniques
 – Disrupt the reading flow

• Solution in dynamic media
 – Place the secondary material close to the primary text
 – Different techniques to do so…

• Transitions are animated
Callout

When in the Course of human Events, it becomes necessary for one People to dissolve the Political Bands which have connected them with another, and to assume among the Powers of the Earth, the separate and equal Station to which the Laws of Nature and of Nature's God entitle them, a decent Respect to the Opinions of Mankind requires that they should declare the causes which impel them to the Separation.

We hold these Truths to be self-evident, that all Men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the Pursuit of Happiness -- That to secure these Rights, Governments are instituted among Men, deriving their just Powers from the Consent of the Governed, that whenever any Form of Government becomes destructive of these Ends, it is the Right of the People to alter or to abolish it, and to institute new Government, laying its

Compress

When in the Course of human Events, it becomes necessary for one People to dissolve the Political Bands which have connected them with another, and to assume among the Powers of the Earth, the separate and equal Station to which the Laws of Nature and of Nature's God entitle them, a decent Respect to the Opinions of Mankind requires that they should declare the causes which impel them to the Separation.

We hold these Truths to be self-evident, that all Men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the Pursuit of Happiness -- That to secure these Rights, Governments are instituted among Men, deriving their just Powers from the Consent of the Governed, that whenever any Form of Government becomes destructive of these Ends, it is the Right of the People to alter or to abolish it, and to institute new Government, laying its
Overlay

How is this achieved?

• In normal reading mode, just show a small visual cue that there is secondary material
• When selected (i.e., mouse over), material must become
 – Readable, i.e. bigger
 – Salient and distinguishable from primary text
• Primary text has different strategies for making space
 – Moving, shrinking, overlay, margin
• Supporting material has different display strategies
 – Text reflow, text & image layout
• Space and salience are negotiated between primary text and secondary material
 – Common protocol for characteristics
Negotiation process

1. Supporting object makes initial proposition
2. Primary text checks available space and characteristics and provides guideline
3. Supporting object chooses presentation strategy
 - May differ from original proposal
 - Must fit guideline
4. Primary object chooses space-making strategy

Examples of fluid documents (Video)

Figure 1. Excerpt of Romeo and Juliet with underline cues indicating annotations.

Figure 2. An animation expands the annotation fluidly, moving the surrounding text apart.

Figure 3. Margins can also be used for supporting material.

Figure 4. When space is at a premium, supporting material can overlay the primary material.
SCWM - Scheme Constraints
Window Manager

[Greg Badros, SG 2000]

Motivation

• Window managers allow window positioning only by direct manipulation.
• Users might want to specify window placements on a higher level
 – examples: tile, cascade
 – ..but more elaborate relations needed..
• Approach: specify spatial constraints between windows
Types of constraints

- **Constant Height/Width Sum** Keep the total of the height/width of two windows constant.
- **Horizontal/Vertical Separation** Keep one window always to the left of or above another.
- **Strict Relative Position** Maintain the relative positions of two windows.
- **Vertical/Horizontal Maximum/Minimum Size** Keep the height/width of a window below/above a threshold.
- **Vertical/Horizontal Relative Size** Keep the change in heights/widths of two windows constant (i.e., resize them by the same amount, together).
- **Vertical/Horizontal Alignment** Align the edge or center of one window along a vertical/horizontal line with the edge or center of another window.
- **Anchor** Force a window position to stay in place.
Application of constraints

- Click on toolbar to select constraint type
- Click on windows to be constrained
 - Middle of the window: constrain middle (e.g., alignment)
 - Edge or corner: constrain edge or corner

<table>
<thead>
<tr>
<th></th>
<th>NW</th>
<th>N</th>
<th>NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>SE</td>
<td></td>
</tr>
</tbody>
</table>

Example
Managing constraints

• Constraint investigator window
• Visual overlay on the actual window
• Compositions (programming by example)
 – Record the composition of n windows
 – At playback, ask for n other windows
• Implicit constraints
 – Snap-dragging: near windows snap together and a constraint is added.
 – Scheme code can be written to automatically add constraints when a window is created

Implementation

• Based on fvwm2
• Extended by Scheme programming language
• Integration of a constraint solver written in C++, wrapped in scheme

• http://scwm.sourceforge.net/
• …ends in 2000 with version 0.99.6.2
Smart graphics: Overview of lecture content

Lecture „Smart Graphics“
Andreas Butz, Otmar Hilliges
8.2.2006

Goal: 4 disciplines talking to each other

- Designers have produced graphics forever
- Psychologists tell us how humans perceive and process
- AI provides the tools to use this knowledge
- Computer Graphics provides the medium
3 main parts of the lecture

• Motivations
 – Graphics & Perception
 – Graphics & Design
 – Graphics & Communication

• Methods
 – Representation & Reasoning: A collection of AI tools and formalisms
 – Rendering: How they can be applied to graphics

• Milestones
 – Examples from various fields

Graphics & Perception
Knowledge acquisition pipeline
[W. Bradford Paley, SG 2003]

Simplified model of human sensemaking processes, useful for designing visual representations

Graphics & Design
How to use visual design effectively?

Refer to human survival strategies

- Organize
- Economize
- Communicate

Color theory acc. to Johannes Itten (1961)
Graphics & Communication

Structure of Graphics

1. Preparation
 - Bouquet in a basket with decorations
 - There is a gathering
 - Elaboration
 - 2.4
 - 4.3

2. Elaboration
 - Elaboration
 - 4.2
 - 4.3

3. Elaboration
 - Elaboration
 - 4.3
 - 4.3

4. Evaluation
 - Evaluation
 - 4.3
 - 4.3

5. Evaluation
 - Evaluation
 - 4.3
 - 4.3

Diagram:

- Price vs. Mileage for 1979

- Car price for 1979
- Car mileage for 1979

- Data points indicating trends in price and mileage for vehicles.
Some typical elements of SG systems

- Strong simplification and generalization
- Often only some elements present
Suche und Constraintverfahren

• Suche:
 – (blinde) Tiefen- und Breitensuche
 – Algorithmus A + A*
 – Minimax- + Alpha-Beta-Verfahren
 – Hillclimbing
 – Bidirektionale Suche
 – Simulated Annealing

• Constraints
 – Formalisierung
 – Lösungsverfahren
A simple PFLP example

- total size of search space $b^d = 4^5 = 1024$
 - b = number of possible labeling for a point feature
 - d = number of point features to be labeled
- if the search proceeds A, B, C, D, E with preference 1, 2, 3, 4 then since A1 conflicts with all E labelings, we know we’ll explore at least 4^4 labelings (256)
- we can examine how the heuristics and pruning techniques might affect this

Algorithm 1: layering

“layered drawings place vertices according to their depth from a reference node, typically this prescribes the y-coordinates of the vertices”

For example:
- set: $y(v) =$ distance from root
- set: $x(v) =$ inorder rank of v

inorder traversal: defined for binary trees as the recursive traversal of the left subtree of the root, followed by the root, and then the right subtree.
Force-directed methods

- Hirsch formulated a successful solution technique for the PLFP problem using a force analogue, where the repulsion of a label position was estimated from the overlap regions.
- Graph drawing can also be done by force-directed methods.

Example (15/23 Objects)
AFLs at different levels

- AFLs can be used at different levels for different purposes
 - Example above is for language generation
- Assumption: the analysis process is perfect
- Problem if generation and analysis have the same bug

Questions answered:
- Is the text correct?
 - No homonyms?
- Are the sounds correct?
 - No homophones?
- Is the sound played correctly?
 - Are the speakers OK?

Milestones
SG & 3D

- Aufriss
- Explosion
- Metagraphik
- Annotation
- Abstraktion
- Kameraplanung

Interactive SG Systems

- So far only: intelligent generation of graphics
- But also: analysis, matching and processing of graphics and input according to cognitive criteria
- \(\rightarrow \) different meaning of „Smart Graphics“
- Querying
 - Bitmap images
 - Vector drawings
 - 3D models
- Sketching
 - Polygonal shapes
 - Organic 3D models
SG & Text

- Smart Text Arvo 00

Smart Text

- Fluid Documents, Chang 00

When in the Course of human Events, it becomes necessary for one People to dissolve the Political Bands which have connected them with another, and to assume among the Powers of the Earth, the separate and equal Station to which the Laws of Nature and of Nature's God entitle them, a decent Respect to the Opinions of Mankind requires that they should declare the causes which impel them to the Declaration.

We hold these Truths to be self-evident, that all Men are created equal, that they are endowed by their Creator with certain inalienable Rights, that among these are Life, Liberty and the Pursuit of Happiness -- That to secure these Rights, Governments are instituted among Men, deriving their just Powers from the Consent of the Governed, that whenever any Form of Government

SG & UI

- Freeform Interfaces (Igarashi)

- SCWM, Badros 00
Exercises

• One major class project (in infoviz)
 – Base concept, criteria
 – Choice of tools
 – Implementation of a working demo
 – Documentation in the form of a research paper
• Groups of 2-4 students
• Final presentation at the end of the semester
 – Short talk explaining what and how
 – Demo of the implementation
 – Will be open to the public

Structure of the research paper

• Introduction
 – What is it about? Which problem are you solving?
• Related work
 – What have others done to solve your problem?
• Approach
 – What is your formalism, math, key concept?
• Implementation
 – How did you implement your approach?
• Result, Example
 – Documented test run of your work, screen shot, execution times..
• Conclusions & future work
 – What did you learn in the process?
 – What problems remain unsolved?
Style of the research paper

- Templates for Springer LNCS

 http://www.springer.de/comp/lncs/authors.html
- PDF file, Max. 12 pages
- All image captions self-contained
- Full references
- American English
- Active voice
 - We describe a system which..., we found that...
- As simple and understandable as possible
 - Goal: any computer scientist should be able to understand and reproduce your work