Mensch-Maschine-Interaktion II
Human-Machine Interaction II

Richard Atterer
Ludwig-Maximilians-Universität München
Sommersemester 2008

(Lehrkonzept: Prof. Hußmann)
Structure

• Chapter 1: HCI and the WWW

• Chapter 2: Mobile and Ubiquitous User Interfaces

• Chapter 3: Information Visualization
1 HCI and the Web

1.1 HCI – A Quick Reminder
1.2 Web Technology – A Brief Overview
1.3 Web Usability: How Do We Use the Web?
1.4 Designing Web Sites for Usability
1.5 Web Accessibility

Literature:
• Jakob Nielsen: Designing Web Usability, New Riders 2000
• Steve Krug: Don’t Make Me Think, New Riders 2006 (2nd ed.)
Building Successful Digital Products

• Tension
 – different objectives
 – different design goals

• Step by step 1-2-3

• Solution
 – Products in the overlapping space

1. What do people desire?
2. What will sustain a business?
3. What can we build?

Objective: a product that is desirable and viable and buildable

From A. Cooper, About Face 2.0
What is Usability?

- “Usability is a quality attribute that assesses how easy user interfaces are to use. The word ‘usability’ also refers to methods for improving ease-of-use during the design process.” (Jakob Nielsen)

- “Scientific discipline using observation, measurement and design principles to enhance a site visitor’s ability to perform specific tasks” (Kathy Gill)

- “… the **effectiveness**, **efficiency** and **satisfaction** with which a specified set of users can achieve a specified set of tasks …” (ISO)
Why is Usability Important?

• Improving usability can
 – increase productivity of users
 – reduce costs (support, efficiency)
 – increase sales/revenue (web-shop)
 – enhance customer loyalty
 – win new customers

• Several case studies that show the benefit of usability

• Usability is often considered as sign of quality

• Working with users can create ideas for new products, e.g. "similarities" feature (people who bought this also bought that) at amazon.com (Source: Interview Maryam Mohit)
Human-Computer Interaction Basics (1): Views and Models

- Facade & machinery and their integration
 - What the user sees and what happens in the background
 - What humans can perceive
 » Physiological and psychological limitations
 - What users want
 - What humans make of what they see
 » Mental models

- Create adequate conceptual models
 - Make the application domain visible/tangible
 - Know Thy User
 - Map internal functions to externally visible affordances
 - Create an experience
Human-Computer Interaction Basics (2): Process

- Investigate requirements seriously
 - Observations, studies, focus groups
- Usability is a central element of all development activities
 - Part of quality assurance
- Iterative development
 - Early prototypes: Paper prototypes, mock-ups
 - High-fidelity prototypes & user studies
- Guidelines and principles
 - E.g. learnability, efficiency, memorability, errors, satisfaction (Nielsen)
- Evaluation
 - Usability engineering as an empirical discipline
Web Usability

- Usability of Web sites and applications delivered over the WWW
- Dependent on several issues related to
 - Web technology
 - Web design
 - Project Management
 - Usability evaluation
- Web usability is **not** about “adding some fancy graphics, color, and cool styles at the end of the project”
- Web usability can be measured!
1 HCI and the Web

1.1 HCI – A Quick Reminder

1.2 Web Technology – A Brief Overview

1.3 Web Usability: How Do We Use the Web?

1.4 Designing Web Sites for Usability

1.5 Web Accessibility

Literature:

• Jakob Nielsen: Designing Web Usability, New Riders 2000

• Steve Krug: Don’t Make Me Think, New Riders 2006 (2nd ed.)
What do we need for a distributed system to share documents?

• How are documents encoded?
 – Content
 – Semantics
 – Presentation

• How are documents identified?
 – Where is data held?
 – How can data be accessed?

• How are documents transmitted/transported to the user?
Distributed File Servers

• Document format
 – Any document

• Mechanism for identification
 – File name (Alias for server name and path)

• Transfer protocol
 – E.g. SMB/CIFS, NFS, AFP
The WWW Approach

• Document format
 – Hypertext Markup Language, HTML
 » Document Type of
 Standardized General Markup Language (SGML)
 – Alternative (simpler): XHTML, based on XML

• Mechanism for identification
 – Uniform Resource Identifier, URI
 » used as Uniform Resource Locator, URL

• Transfer protocol
 – Hypertext Transfer Protocol, HTTP
 » ASCII-coded Request-Reply protocol using TCP/IP
Mixture of Content, Semantics, Presentation

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/REC-html41/loose.dtd">

<html>
 <head>
 <title>Simple Example Document in HTML</title>
 <meta name="author" content="Heinrich Hussmann">
 <meta name="description" content="Just for demo">
 </head>

 <body>
 A simple text.

 Font Helvetica

 Font Times

 Bold <i>Italic</i>
 </body>
</html>
Architecture and Protocol (simplified)

- Client-server architecture
- Synchronous communication model (request/response)
- Resources
 - Unit that is communicated between Client and Server
 - Static or dynamic

Web Client

Web Server

HTTP Protocol

request URL

download HTML

resources in the file system
Documents and Resources

Client (Browser)

Server

URL
analyze
image 1
image 2
...
image n

Request
Response
load resource (HTML)
load resource
load resource
...
load resource

Request
Response
load resource
load resource
load resource
...
load resource

Request
Response
load resource
load resource
load resource
...
load resource
Example Architecture

- Web browser
- Web server
- Database
- Servlet
- Gateway
- CGI
- ODBC
- IIOP
- HTTP
- File system
The WWW is a Distributed System

- What is a distributed System?
 - Tanenbaum, A., S. (from Computer Networks)
 "... in a distributed system, the existence of multiple autonomous computers is transparent (i.e., not visible) to the user."
 - Leslie Lamport:

 Received: by jumbo.dec.com (5.54.3/4.7.34)
 id AA09105; Thu, 28 May 87 12:23:29 PDT
 Date: Thu, 28 May 87 12:23:29 PDT
 From: lamport (Leslie Lamport)
 Message-Id: <8705281923.AA09105@jumbo.dec.com>
 To: src-t
 Subject: distribution

 There has been considerable debate over the years about what constitutes a distributed system. It would appear that the following definition has been adopted at SRC:

 A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.
Information Exchange Between Browser and Server

- Obviously the document
- Further information available (e.g. header fields)
 - Browser type and version
 - Operating system (version)
 - Referer
 - Cookies
 - Screen size, window size
 - If Java/JavaScript/VBScript are enabled
 - List of plug-ins installed
 - Network parameter and route
 - ...
- Rich source of information
 - Can make applications more usable
 - Information may not be complete or may be wrong

Try it out at:
http://network-tools.com/analyze/
The WWW is a Distributed System
Usability Issues

• Network
 – Delay
 – Failure
 – Jitter
 – Latency
 – Bandwidth

• Multi-user System
 – Work load, system performance
 – Concurrency problems
Designing Distributed Applications

• Basics
 – applications consist of several parts (e.g. different processes)
 – in general these parts are executed on different machines
 – these parts of the application are executed concurrently or one after another
 – there is communication between these parts

• Software/Application Design Aspects
 – data
 » analyzing data transfer (optimize for minimum)
 » investigate how caching can be supported
 » keep data safe (minimize data that is given away)
 – functional
 » execute functions where it is most reasonable
 » regard the infrastructure on that the applications will be executed
 – response time (optimize for minimum)
The Web Means Heterogeneity of Platforms

• Processing power
 – Processor, co-processors, cache
 – RAM
• I/O-performance
 – Hard drive speed
 – Network
• Input and Output
 – Displays
 – Keyboard layout
• Additional Hardware and Periphery
 – Video and audio (in/out)
 – Card reader, printer, scanner
• Software,
 – Browser
 – Operating System
Statistics on Platform Usage

- Never trust the statistics!
 - Also small groups of users are important!
 - Statistics may be very unreliable

OS Platform Statistics

Windows XP is the most popular operating system. The Windows family counts for nearly 90%:

<table>
<thead>
<tr>
<th>Year</th>
<th>WinXP</th>
<th>W2000</th>
<th>Win98</th>
<th>Vista</th>
<th>W2003</th>
<th>Linux</th>
<th>Mac</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>72.6%</td>
<td>3.7%</td>
<td>1.1%</td>
<td>8.4%</td>
<td>1.9%</td>
<td>3.9%</td>
<td>4.4%</td>
</tr>
<tr>
<td>February</td>
<td>72.3%</td>
<td>4.0%</td>
<td>1.0%</td>
<td>7.6%</td>
<td>1.8%</td>
<td>3.8%</td>
<td>4.3%</td>
</tr>
<tr>
<td>January</td>
<td>73.6%</td>
<td>4.0%</td>
<td>0.8%</td>
<td>7.3%</td>
<td>1.9%</td>
<td>3.6%</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

Browser Statistics Month by Month

<table>
<thead>
<tr>
<th>Year</th>
<th>IE7</th>
<th>IE6</th>
<th>IE5</th>
<th>Fx</th>
<th>Moz</th>
<th>S</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>21.9%</td>
<td>30.1%</td>
<td>1.1%</td>
<td>37.0%</td>
<td>1.1%</td>
<td>2.1%</td>
<td>1.4%</td>
</tr>
<tr>
<td>February</td>
<td>21.5%</td>
<td>30.7%</td>
<td>1.3%</td>
<td>36.5%</td>
<td>1.2%</td>
<td>2.0%</td>
<td>1.4%</td>
</tr>
<tr>
<td>January</td>
<td>21.2%</td>
<td>32.0%</td>
<td>1.5%</td>
<td>36.4%</td>
<td>1.3%</td>
<td>1.9%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

Display Resolution

The current trend is that more and more computers are using a screen size of 1024x768 pixels or more:

<table>
<thead>
<tr>
<th>Year</th>
<th>Higher</th>
<th>1024x768</th>
<th>800x600</th>
<th>640x480</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>26%</td>
<td>54%</td>
<td>14%</td>
<td>0%</td>
<td>6%</td>
</tr>
</tbody>
</table>
Ausland

Rücktritt und Neustart Berlusconis
Der italienische Ministerpräsident wirft aus taktischen Gründen das Handtuch, denn er will mit seinen alten Partnern eine neue Koalitionsregierung bilden. Doch die Parteien sind völlig zerstritten. Daher sind kurzfristige Neuwahlen nicht auszuschließen
115 Zeilen, MICHAEL BRAUN (TAZ-Bericht)

Falls Sie sich
Other Graphical Browsers
Plain Text Browser, e.g. Lynx
Audio Browsing

- There are users who *listen* to Web sites!
- Example:
 - Web browser *Safari*
 - Screen reader *Voice Over* (built into Mac OS)
- Who among the Web designers will think of these users?
1 HCI and the Web

1.1 HCI – A Quick Reminder
1.2 Web Technology – A Brief Overview
1.3 Web Usability: How Do We Use the Web?
1.4 Designing Web Sites for Usability
1.5 Web Accessibility

Literature:

• Jakob Nielsen: Designing Web Usability, New Riders 2000
• Steve Krug: Don’t Make Me Think, New Riders 2006 (2nd ed.)
The Web Means Heterogeneity of Users

• In principle, anybody can use the Web!
• Huge span of user variety:
 – Kids
 – Beginners
 – Elderly
 – Experienced technically educated professionals
 – Technically ill-educated professionals
 – Hackers
• “Know Thy User” - Is it possible on the Web?
• Why do people use the Web?
 – Assumedly easy and simple way of achieving things
 – Because it is fun
 – Because there are no other options
• (As always:) Simplicity is most important
Steve Krug: Design and Reality

[Diagram showing a comparison between what we design for and the reality.]

WHAT WE DESIGN FOR...

- Read
- Read
- Read
- [Pause for reflection]
- Finally, click on a carefully chosen link

THE REALITY...

Look around feverishly for anything that...

a) is interesting, or vaguely resembles what you're looking for, and

b) is clickable.

As soon as you find a halfway-decent match, click.

If it doesn't pan out, click the Back button and try again.
Steve Krug: We Don’t Read Pages, We Scan Them

- We are in a hurry.
- We know that we do not have to read everything.
- We are educated in scanning things.

[Images: Comparison between what designers build and what users see.]

- What designers build vs. what users see.
Steve Krug: We Satisfice (satisfying & sufficing)

• We do not make optimal choices
 – We are in a hurry.
 – There is not much penalty for guessing wrong.
 – Weighing options does not guarantee success.
 – Guessing is more fun.

• Gary Klein: Sources of Power - How People Make Decisions
 – Example: Fire commanders do rarely compare options!
 » Find a reasonable plan
 » Check it for obvious problems
 » Try it!
Steve Krug: We Muddle Through

- Users in general do not care how and why things work
 - Any working solution is accepted
 - We do not have the time to analyze the details
 - There is no incentive for having it understood better

- Example:
 - Use a search box for navigating to a site