3 Information Visualization

3.1 Motivation and Examples
3.2 Basics of Human Perception
3.3 Principles and Terminology
3.4 Standard Techniques for Visualization
3.5 Further Examples

Space-Scale Diagrams
(Furnas & Bederson 95)

- User has a fixed-sized viewing window
- Moving it through 3D space yields all possible sequences of pan & zoom

Marti Hearst
Space-Scale Diagrams
(Furnas & Bederson 95)

- A point is transformed to a ray
- Circular regions become cones

We can think of this in terms of 1D too
- When zoomed out, you can see wider set of points
Space-Scale Diagrams
(Furnas & Bederson 95)

• Pure pan (a)
• Pure zoom (b)
• Pan and zoom keeping q in same position in the viewing window (c)

Semantic Zooming

• Geometric (standard) zooming:
 – The view depends on the physical properties of what is being viewed
• Semantic Zooming:
 – When zooming away, instead of seeing a scaled-down version of an object, see a different representation
 – The representation shown depends on the meaning to be imparted.
Arc Diagrams

- Visualization method for representing complex patterns of repetition in string data.
 - Arc diagrams scale efficiently for strings that contain many instances of the same subsequence.
 - Idea of visualizing only a subset of all possible pairs of matching substrings.
 - Highlight just the subsequences essential to understanding the string's structure
Arc Diagrams - Basics

Arc Diagram – Level of Detail

Applied to
• Music
• DNA
• Web pages
• Byte code
Arc Diagram applied to Music

“für Elise”

More details
Martin Wattenberg, Arc Diagrams: Visualizing Structure in Strings
IBM Watson Research Center, Technical report 2002-11
Thread Arcs

- Thread Arcs combine the chronology of messages with the branching tree structure of a conversational thread

- **Benefits**
 - Chronology
 - Relationships
 - Stability
 - Compactness
 - Attribute Highlighting
 - Scale
 - Interpretation/Sense

Bernard Kerr, 2003

Thread Arcs for Emails

- **Visualization**
 - Linear layout of message nodes connected by relationship arcs.
 - Each circular node represents a message in the thread.
 - *Chronology* of the thread is encoded by the position
 - The width of a Thread Arc is a linear function of the size of the thread
 - *Compact visualization* if height is constrained

The relationship between messages are clearer when arcs are draw above and below nodes (B).
Pseudo code for drawing a thread arc

To make a Thread Arc

sort all messages chronologically
find the generation depth of each message

for each message
 if the message is the root message then
 place the node at the starting position
 don’t draw an arc
 else
 place the message to the right of the last message
 if the message generation depth is odd then
 draw an arc above the line to the message’s parent
 else
 draw an arc below the line to the message’s parent
 next message

Space of Possible Thread Arcs (5 Messages)

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| t | 1 | 2 | 6 | 24 |
Chronological Information in the Thread Arcs

Example Email Client using Thread Arcs
Click stream Visualization

• Jeffrey Brainerd Barry Becker
 Case Study: E-Commerce Clickstream Visualization
 Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01)

• http://www.sims.berkeley.edu/courses/is247/s02/readings/brainerd.pdf
Click stream Visualization

Figure 2. Circular layout. All the checkout pages are grouped (lower left). Red edges that emanate from the checkout pages to other parts of the site represent non-purchasers who are abandoning the checkout process.

- Brainerd et al.

Click stream Visualization

Figure 4. Checkout process. Purchasers take a direct route through the checkout process, whereas non-purchasers show a more haphazard route, including self-edges and early abandonment, possibly indicating a confusing checkout process.

- Brainerd et al.
Hyperbolic Browser

- In the hyperbolic plane, the circumference and area of a circle grow exponentially with its radius
- Allocate each node a wedge of the hyperbolic plane
- The node recursively places all its children within an arc of that wedge
 - at an equal distance from itself
 - far enough out so the children are separated by at least a minimum distance
- Parallel lines diverge in hyperbolic geometry
 - each child’s wedge will span about the same angle as its parent’s
 - but not children’s wedges will overlap

Hyperbolic Browser

In the hyperbolic plane, the circumference and area of a circle grow exponentially with its radius. Each node is allocated a wedge of the hyperbolic plane, and its children are recursively placed within an arc of that wedge, at an equal distance from itself and far enough out to ensure they are separated by at least a minimum distance. Parallel lines diverge in hyperbolic geometry; each child’s wedge will span about the same angle as its parent’s, but not children’s wedges will overlap.
Hyperbolic Tree Browser
(Lamping et al. 95)

Inxight’s Hyperbolic Browser
Hyperbolic Tree Views

- Nice demos on the Web
 - www.inxight.com...oops, bought by SAP as of 06/2008, demos offline 8(
 - www.thebrain.com
 » This is a variation on it that might be more interesting
 » Decides dynamically which subsets of the data to show

TheBrain.com
The Fisheye View Metaphor

The **fisheye view** is a metaphor coming from the fisheye lens used in photography. Such a wide angle lens distorts an image in the way that things in the central area appear enlarged, while things aside appear small.

Taken from the internet: www.rolfwegst.com

The idea behind the fisheye is enlarging the focus and keeping the context.

The Fisheye View Theory

(George W. Furnas - CHI 1986)

A Fisheye Calendar.
The Fisheye View Theory

A Review and Taxonomy of Distortion-Oriented Presentation Techniques

Fig. 1. A taxonomy of presentation techniques for large graphical data spaces.

The Fisheye View Theory

(Y. K. Leung, M. D. Apperley 1994)

Metaphor of a perspective wall
The Fisheye View Theory

Unified theory of distortion techniques
• “...stretchable rubber sheet mounted on a rigid frame”
• Stretching = Magnification
• Stretching one part must equal shrinkage in other areas

Fisheye Views Applications

• Semantic fisheyes
• 1-dimensional fisheyes
• 2-dimensional fisheyes
• Fisheyes for precise input
1-dimensional Fisheye

Example: Fisheye Menu

Benjamin B. Bederson.
Fisheye Menus. UIST’00

2-dimensional Fisheye

Document Lens

(G.G.Robertson, J.D.Mackinlay
UIST 1993)

FiCell Project
http://iihm.imag.fr/vernier/
2-dimensional Fisheye

Fisheyes applied to networks

Manojit Sarkar and Marc H. Brown 1992

3-dimensional Fisheye

Marcelo Cohen, Ken Brodlie,
Focus and Context for Volume Visualization,
1-dimensional Fisheye

Normal scaling: Display an object of size A on a window of width B

The magnifier function is the first derivate of the transfer function

The transfer function is the integral of the magnifier function

The problem with the magnifier:

(G.G. Robertson, J.D. Mackinlay
UIST 1993)
1-dimensional Fisheye

The problem with the magnifier:

Parts of the origin will not appear at the destination.
In the picture below the Central Station is visible, but not Marienplatz.
1-dimensional Fisheye

To have transfer function independent of window sizes and resolutions it is common to work with normalized coordinates, i.e. working with intervals from -1 to 1.

\[
T(X) = \frac{(1 + d) \cdot X}{(d \cdot X + 1)}
\]

\[
M(X) = \frac{d + 1}{(d \cdot X + 1)^2}
\]

2-dimensional Fisheye

Applying transfer functions for x- and y-coordinates independently does not give a nice result.
2-dimensional Fisheye

The transfer function for X should depend on Y. For Y=0 in normalized coordinates the transfer function for x should be the 1-dimensional fish eye transfer function T(X). For y=1 it should be the undistorted transfer function T_u, normally T_u(X) = X.

This can be achieved by a weighting function W(Y) with values from 0 to 1. ("function morphing")

\[T(X, Y) = (1-W(Y)) \times T(X) + W(Y) \times T_u(X); \quad W(0) = 0; \quad W(1) = 1; \]

Examples:
\[W(Y) = Y \]
\[W(Y) = Y^2 \]
2-dimensional Fisheye

Bifocal transfer function using Cartesian coordinates

What is the difference?
2-dimensional Fisheye

Using polar coordinates

Because a fish eye should not twist the picture, the transfer function does not depend on the angular coordinate. So the transfer function for the 1-dim. case can be used for the radial coordinate.

\[T(r, \varphi) = (T_{1\text{dim}}(r), \varphi) \]
2-dimensional Fisheye

Bifocal transfer function using polar coordinates

\[
x = m \cdot X \\
y = m \cdot Y \\
X = \frac{1}{m} \cdot x \\
Y = \frac{1}{m} \cdot y
\]
Hints for Programming

• For bitmaps iterate over the pixel of the destination bitmap using the inverse transfer function \((X,Y) = T^{-1}(x, y)\)
 – No pixels are left out
 – The number of pixel are less
• The multiplication of integers and floats may have unexpected results!

switching virtual desktops in 3D
switching virtual desktops in 3D
Sun: Project Looking Glass
functional 3D-Desktop

Video ~ 6min

https://lg3d.dev.java.net/

Visualization on Mobile Devices

• Some common challenges
 – Small screen
 – Limited processing power
 – Limited interaction
 – Limited bandwidth to data source
Rectangular Fish Eye View
saving bandwidth in transmission

Figure 3: Rectangular fish eye view example

Figure 4: Generating ROI grid
Providing context for map navigation

Providing context for map navigation