Mensch-Maschine-Interaktion 1

Chapter 1 (April 22nd, 2010, 9am-12pm):
Introduction, Motivation, History
Basic HCI Principles and Models

• Users and Developers
• 3 Usability Principles by Dix et al.
• 3 Usability Principles by Shneiderman
• Background: The Psychology of Everyday Action
What the User Sees

• Users see only what is openly visible!
What the Developer Knows

• Users have little idea about:
 – architecture,
 – state transitions,
 – dependencies
 – application context
 – system restrictions
 – …

• And users often do not want to know about it.
A Computer Screen and its Interpretation

• What do we see?

• What is shown?

• What is the meaning?
Answers from Skilled Computer Users

- Win2000 desktop
- Text and figures
- Icons and toolbars
- Overlapping windows
- Scroll bars and menus
- Task bar and status information
- Representations of documents
Basic (Naive) Technical Answers

- 2-D surface
- Controllable pixels
- Image with a resolution of 1400x1050 pixels
- For each pixel the colour can be set
- The change of colour can be controlled rapidly
Perfect User’s Answers

• My work environment

• Meeting notes

• Budget for next year

• Request to write a technical article

• Background information on a psychological phenomenon
Metaphor Example 1 – Overlaying Windows

• What is the meaning of the fact that a window is behind another window?

• What is real? What is illusion?

• What does iconizing do?

• Models? Conceptual… Implementation… Represented…
Metaphor Example 2 – Scrollbar vs. Hand

- Moving up the hand Moves up the document
- What happens in reality?
 What do we imagine?
 What is the metaphor?
Metaphor Example 2 – Scrollbar vs. Hand

• Moving up the scroll bar moves down the document
• What happens in reality?
What do we imagine?
What is the metaphor?
Metaphor Example 2 - Scrollbar vs. Hand

• Adequacy of interaction mechanism depends on content displayed
Types of Design Rules

- **Principles**
 - abstract design rules
- **Golden rules and heuristics**
 - more concrete than principles
- **Standards**
 - (very) detailed design rules
- **Design pattern**
 - generic solution for a specific problem
- **Style guides**
 - provided for devices, operating systems, widget libraries
Usability 101 (by Jakob Nielson)

• “Usability is a quality attribute that assesses how easy user interfaces are to use. The word ‘usability’ also refers to methods for improving ease-of-use during the design process.”

• Usability has five quality components:
 – Learnability: How easy is it for users to accomplish basic tasks the first time they encounter the design?
 – Efficiency: Once users have learned the design, how quickly can they perform tasks?
 – Memorability: When users return to the design after a period of not using it, how easily can they reestablish proficiency?
 – Errors: How many errors do users make, how severe are these errors, and how easily can they recover from the errors?
 – Satisfaction: How pleasant is it to use the design?
Basic HCI Principles and Models

• Users and Developers
• 3 Usability Principles by Dix et al.
• 3 Usability Principles by Shneiderman
• Background: The Psychology of Everyday Action
Principles to Support Usability

• Learnability
 – the ease with which new users can begin effective interaction and achieve maximal performance

• Flexibility
 – the multiplicity of ways the user and system exchange information

• Robustness
 – the level of support provided to the user in determining successful achievement and assessment of goal-directed behavior

Principles of Learnability (1 / 2)

• Predictability
 – determining effect of future actions based on past interaction history
 – operation visibility

• Synthesizability
 – ability of the user to assess the effect of past operations on the current state
 – the user should see the changes of an operation
 – immediate vs. eventual feedback
Principles of Learnability (2 / 2)

• Familiarity
 – how prior knowledge applies to new system
 – affordance (guessability)

• Generalizability
 – extending specific interaction knowledge to new situations

• Consistency
 – likeness in input/output behavior arising from similar situations or task objectives
Principles of Flexibility (1 / 6)

• Ways in which the user and the system exchange information
 – freedom from system imposed constraints on input dialogue
 – user preemptiveness: user initiates dialog
 – system preemptiveness: system initiates dialog

user preemptiveness

system preemptiveness

the multiplicity of ways the user and system exchange information
Principles of Flexibility (2 / 6)

• Multithreading
 – ability of system to support user interaction for several tasks at a time
 – concurrent multimodality: simultaneous communication of information pertaining to separate tasks
 • multi-model dialog
 • editing text and beep (incoming mail) at the same time
 – interleaving multimodality: permits temporal overlap between separate tasks, dialog is restricted to a single task
 • window system, window = task
 • modal dialogs
 • interaction with just one window at a given time
Principles of Flexibility (3 / 6)

• Task migratability
 – passing responsibility for task execution between user and system
 – example: spell checking
Principles of Flexibility (4 / 6)

• Substitutivity
 – allowing equivalent values of input and output to be substituted for each other
 – representation multiplicity
 – equal opportunity: blurs the distinction between input and output
Principles of Flexibility (5 / 6)

• Customizability
 – modifiability of the user interface by the user (adaptability) or system (adaptivity)
 – adaptability: users ability to adjust the form of input and output
 – adaptivity: automatic customization of the user interface by the system
Principles of Flexibility (6 / 6)

• Customizability
 – modifiability of the user interface by the user (adaptability) or system (adaptivity)
 – adaptability: users ability to adjust the form of input and output
 – adaptivity: automatic customization of the user interface by the system
Principles of Robustness (1 / 2)

• → Level of support provided to the user in determining successful achievement and assessment of goal-directed behavior

• Observability
 – ability of the user to evaluate the internal state of the system from its perceivable representation

• Recoverability
 – ability of the user to correct a recognized error
 – reachability (states): forward (redo) / backward (undo) recovery
 – commensurate effort (more effort / steps for deleting a file than for moving it)
Principles of Robustness (2 / 2)

• Task conformance
 – degree to which system services support all of the user's tasks
 – task completeness; task adequacy

• Responsiveness
 – how the user perceives the rate of communication with the system
 – preferred: short durations and instantaneous responses (< 100ms)
 – stability and indication of response time

Letterboxing: Please wait. This may take a while.
3 Usability Principles by Dix

- Learnability
 - Predictability
 - Synthesizability
 - Familiarity
 - Generalizability
 - Consistency

- Flexibility
 - Dialogue initiative
 - Multithreading
 - Task migratability
 - Substitutivity
 - Customizability

- Robustness
 - Observability
 - Recoverability
 - Responsiveness
 - Task conformance

[Section 7.2 in Dix. “Human Computer Interaction”]