Looking Back …

• Humans
 – Understanding them needs knowledge from many fields
 – Processing information by humans can be modelled
 – Human physiology plays an important role for designing systems
 – Vision
 • eye tracking, eyes can be tricked, preattentive processing
 • Gestalt psychology
 – Hearing
 • audibility, pain threshold, spatial hearing
 – Touch
 • input and output
 – Memory
 • sensorial, short term (working), and long term memory
 • short term memory: 7 ± 2 chunks
 • long term memory: episodic and structural memory
 • generate new information: deduction, induction, abduction
Looking Back ...

• Affordances
 – Attractive things ‘work’ better (i.e. are often perceived as easier to use)
 – Perceived affordance is the perceived possibility for action
 • not only bc learned by conventions, feedback, etc.

• Intuitiveness
 – Do not rely on something to be intuitive, especially with regard to virtual interfaces
 – Providing clear perceived affordances and constraints can help the user
 – Use previous knowledge, e.g. metaphors for interaction

• Signifiers
 – Indicators in the physical or social world that can be interpreted meaningfully
 – Help to make possible actions and states visible
 – Often unconsciously / unintentionally (e.g. are still people waiting for the bus?) but can be applied intentionally (show a scrollbar to indicate length)
Mensch-Maschine-Interaktion 1

Chapter 7 (July 8, 2010, 9am-12pm):
Basic HCI Models
Basic HCI Models

- Predictive Models for Interaction: Fitts’ / Steering Law
- Descriptive Models for Interaction: GOMS / KLM
Fitts’ Law – Introduction

• Robust model of human psychomotor behavior
• Predicts movement time for rapid, aimed pointing tasks
 – Clicking on buttons, touching icons, etc.
 – Not suitable for drawing or writing
• Developed by Paul Fitts in 1954
• Describes movement time in terms of distance+size of target and device
• Rediscovered for HCI in 1978
• Subsequently heavily used and discussed

Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT.
Fitts’ Law – History

- **Paul M. Fitts** was an American psychologist and one of the pioneers in improving aviation safety. He went on to lead the Psychology Branch of Air Force Research Laboratory – later renamed, in his honor, to Fitts Human Engineering Division.

- Fitts’ Law was his most famous work. It was first mentioned in a publication in 1954, and first applied to Human-Computer Interaction in 1978.

- Fitts’ discovery "was a major factor leading to the mouse's commercial introduction by Xerox“ [Stuart Card]

- Initially derived from a theorem for analogue information transmission

http://fww.few.vu.nl/hci/interactive/fitts/

Derivation from Signal Transmission

\[C = B \log_2 \left(1 + \frac{S}{N} \right) \]

- Shannon-Hartley Theorem
- \(C \) is the channel capacity (bits / second)
- \(B \) is the bandwidth of the channel (Hertz)
- \(S \) is the total signal power over the bandwidth (Volt)
- \(N \) is the total noise power over the bandwidth (Volt)
- \(S/N \) is the signal-to-noise ratio (SNR) of the communication signal to the Gaussian noise interference (as linear power ratio – \(\text{SNR}(\text{dB}) = 10\log_{10}(S/N) \))

Fitts’ Law – Formula

- The time to acquire a target is a function of the **distance** to and **size** of the target and depends on the particular pointing **system**

\[MT = a + b \log_2 \left(1 + \frac{D}{W}\right) \]

- **MT**: movement time
- **a and b**: constants dependent on the pointing system
- **D**: distance to the target area
- **W**: width of the target
Fitts’ Law – Index of Difficulty

\[MT = a + b \log_2 \left(1 + \frac{D}{W}\right) \]

- Index of Difficulty, \(ID = \log_2 \left(1 + \frac{D}{W}\right) \)
 - \(MT = a + b \cdot ID \)
 - \(ID \) describes the difficulty of the task independent of the device / method

- Units
 - Constant \(a \) measured in seconds
 - Constant \(b \) measured in seconds / bit
 - Index of Difficulty, \(ID \) measured in bits
Fitts’ Law – Advanced Topics

• Throughput
 – Also known as index of performance or bandwidth
 – Single metric for input systems
 – One definition: $TP = \frac{ID}{MT}$ (‘average’ values of ID and MT are used)
 – Another definition: $TP = \frac{1}{b}$ (equals ID / MT only if $a=0$)
 – Probably still the best approach:
 • Use regression analysis to compute a and b
 • Use $\frac{1}{b}$ as throughput cautiously

• See detailed discussion in [Zhai 2004]

Fitts’ Law Experiment

- Extension to 2D
 - “Status Quo”: use horizontal width
 - “Sum Model”: $W = \text{width} + \text{height}$
 - “Area Model”: $W = \text{width} \times \text{height}$
 - “Smaller Of”: $W = \text{width, height}$
 - “W’ Model”: width in movement direction
- See also [MacKenzie, Buxton 1992] and [Zhai et al. 2004] who refer to

$$ID = \log_2 \left(\sqrt{\left(\frac{D}{W}\right)^2 + \eta \left(\frac{D}{H}\right)^2} + 1 \right)$$

(Simple) Linear Regression

- How to measure a and b for a new pointing device / menu / etc.?

 $MT = a + b \log_2 \left(1 + \frac{D}{W} \right)$

 $ID = \log_2 \left(1 + \frac{D}{W} \right)$

- Setup an experiment with varying D and W and measure MT

- Fit a line through the measured points: $a =$ intercept, $b =$ slope

http://fww.few.vu.nl/hci/interactive/fitts/
Implications for HCI (1)

- Bigger buttons
 - e.g. web links
 - e.g. check / radio boxes

- Proportional to amount of use?!
 - See principle (and golden rule) of consistency!

- Use current location of the cursor
 - distance is close to zero

- Use edges and corners (for examples see next slide)
 - edges of the screen have infinite height or width, respectively
 - corners have infinite height and width

Implications for HCI (1)

• Edges and corners
Implications for HCI (2)

• Compare and evaluate input devices
• Current examples
 – Behind the display cursor
 – Dynaspot

Additional Literature for Fitts’ Law

• Bibliography of Fitts’ Law Research (to get an impression about research in the HCI community): http://www.yorku.ca/mack/RN-Fitts_bib.htm

Steering Law

• Equally early discovery: 1959 by Nicolas Rashevsky
• For HCI rediscovered in 1997 and there sometimes called the Accot-Zhai steering law

• Models the movement time of a pointer through a 2D tunnel
• Can be seen as an extension to Fitts’ Law

Steering Law in Practice
Steering Law Equation

- The time to acquire a target through a tunnel is a function of the **length** and **width** of the tunnel and depends on the particular pointing **system**

\[MT = a + b \frac{D}{W} \]

- **MT**: movement time
- **a** and **b**: constants dependent on the pointing system
- **D**: distance, i.e. length of the tunnel
- **W**: width of the tunnel

Adapted from Robert Miller 19
Steering Law Equation – Index of Difficulty

• The time to acquire a target through a tunnel is a function of the length and width of the tunnel and depends on the particular pointing system

\[MT = a + b \frac{D}{W} \]

• Index of Difficulty: ID = D / W

• Index of Difficulty is now linear, not logarithmic as in Fitts’ Law
 – Steering is more difficult than pointing

Adapted from Robert Miller
Steering Law Extension to Arbitrary Tunnels

• The time to acquire a target through a tunnel is a function of the length and width of the tunnel and depends on the particular pointing system.

• The previously shown formula applies only for constant width W

$$MT = a + b \frac{D}{W}$$

• Let the width $W(s)$ be parameterized by s running from 0 to D

$$MT = a + b \int_C \frac{ds}{W(s)}$$

• C: path characterised by s

• $W(s)$: width dependent on s
Steering Law Applied

- Early work focused on car driving scenarios and models with straight tunnels
- Various example tunnel shapes have been explored

Steering Law Applied

- Further extension to 3D e.g. virtual reality applications