
LFE M di i f ik P f D H i i h H ß (D) Al d D L G B llLFE Medieninformatik Prof. Dr. Heinrich Hußmann (Dozent), Alexander De Luca, Gregor Broll,
Max-Emanuel Maurer (supervisors)

P ktik E t i klPraktikum Entwicklung von
Mediensystemen mit Android
Storing, Retrieving and Exposing Data

Outline

• Introduction
Li h i h S i• Lightweight Storing

• Files
• Databases
• Network
• Content Providers
• Exercise 3

Introduction

• All application data are private to an application
M h i k d il bl f h• Mechanisms to make data available for other
applications
Some simple/basic applications do not require• Some simple/basic applications do not require
information to be stored

• More elaborated software needs storage/retrieval• More elaborated software needs storage/retrieval
functionality for different functionalities like:

Preserving an application’s status (paused, first startup, etc.)g a app a o a u (pau d, a up,)
Saving user preferences (font size, sound on/off, etc.)
Working with complex data structures (calendars, maps, etc.)
…

Purpose & Resourcep
Introduction

• Depending on the purpose of storing data, Android
offers approaches with different complexity:offers approaches with different complexity:

Store and retrieve simple name/value pairs
File operations (read, write, create, delete, etc.)File operations (read, write, create, delete, etc.)
SQLite databases to work with complex data structures
Network operations to store and retrieve data from a network
Content providers to read/write data from an application’s
private data

Preferences

• Application preferences are simple name/value pairs
like “greeting hello name” or “sound off”like greeting=hello name or sound = off

• To work with preferences, Android offers an extremely
simple approachsimple approach

• Preferences can only be shared with other components
in the same packagein the same package

• Preferences cannot be shared across packages
• Private preferences will not be shared at all• Private preferences will not be shared at all

Using Preferencesg
Preferences

• Reading Preferences
C t t tSh dP f (St i i t d)Context.getSharedPreferences(String name, int mode) opens
a set of preferences defined by “name”
If a name is assigned, the preferences set will be shared g , p
amongst the components of the same package
Activity.getPreferences(int mode) can be used to open a set
that is private to the calling activitythat is private to the calling activity

Opens a preferences set with the name “Preferences” in private mode

SharedPreferences settings = getSharedPreferences("Preferences", MODE_PRIVATE);
boolean sound = settings.getBoolean("sound", false);

Reads a boolean parameter from the set. If the parameter does not exist, it will be created
with the value defined in the second attribute (other functions: getAll() getInt() getString()with the value defined in the second attribute. (other functions: getAll(), getInt(), getString(),
etc.)

Using Preferencesg
Preferences

• Writing Preferences
Ch f d i EditChanges on preferences are done using an Editor
(SharedPreferences.Editor) object
Each setting has one global Editor instance to administrate g g
changes
Consequence: each change will be available to every activity
working with that preferences setworking with that preferences set

Gets the Editor instance of the preferences set

SharedPreferences.Editor editor = settings.edit();
editor.putBoolean("sound", false);
// COMMIT!!
editor.commit();

Writes a boolean to a parameter

Attention: Changes are not drawn back to the settings before the commit is performed

Files

• Files can be used to store bigger amounts of data then
using preferencesusing preferences

• Android offers functionality to read/write files
Only local files can be accessed• Only local files can be accessed

Ad t t h t f d t• Advantage: can store huge amounts of data
• Disadvantage: file update or changing in the format

might result in huge programming effortmight result in huge programming effort

Working with Filesg
Files

• Reading from files
C t t Fil I t(St i) Fil I tStContext.openFileInput(String name) opens a FileInputStream
of a private file associated with the application
Throws a FileNotFoundException if the file doesn’t existp

Open the file “test2.txt” (can be any name)

FileInputStream in = this.openFileInput("test2.txt");
…
in.close();

Don’t forget to close the InputStream at the end

Working with Filesg
Files

• Writing files
C t t Fil O t t(St i i t d)Context.openFileOutput(String name, int mode) opens a
FileOutputStream of a private file associated with the
application
If the file does not exist, it will be created
FileOutputStreams can be opened in append mode, which
means that new data will be added at the end of the filemeans that new data will be added at the end of the file

Open the file “test2.txt” for writing (can be any name)

FileOutputStream out = this.openFileOutput("test2.txt", MODE_APPEND);
…
in.close();

Don’t forget to close the InputStream at the end

Using MODE-APPEND opens the file in append mode

Working with Filesg
Files

• Reading static files
T t ti fil k d i th li tiTo open static files packed in the application, use
Resources.openRawResource (R.raw.mydatafile)
The files have to be put in the folder res/raw/p / /

Get the contexts resources

InputStream in = this.getResources().openRawResource(R.raw.test);
…
in.close();

Don’t forget to close the InputStream at the end

SQLite DatabasesQ

• In some cases, files are not efficient
If lti th d d d t i l tIf multi-threaded data access is relevant
If the application is dealing with complex data structures that
might changeg g
Etc.

• Therefore, Android comes with built-in SQLite support
• Databases are private to the package that created

them
• Support for complex data types, e.g. contact

information (first name, familiy name, address, …)
• Databases should not be used to store files
• Hint: an example on how to use databases can be

f d i th SDK t l /N t P dfound in the SDK at samples/NotePad

SQLite DatabasesQ

• SQLite is a lightweight software library
I l f ll ACID li d b• Implements a fully ACID-compliant database

Atomicity
ConsistencyConsistency
Isolation
Durabilityy

• Size only several kilobytes
• Some SQL statements are only partially supported

(e.g. ALTER TABLE)
• See http://www.sqlite.org/ for more information

Using Databasesg
SQLite Databases

• Creating a database
C t t t D t b (St i i t i i t dContext.createDatabase(String name, int version, int mode,
CursorFactory factory) creates a new database and returns a
SQLiteDatabase object
Throws a FileNotFoundException if the database could not be
created

Create a database with the name “test.db” (can be any name)

SQLiteDatabase dbase = this.createDatabase("test.db",
1, MODE_PRIVATE, null);

Optional CursorFactory parameter

Using Databasesg
SQLite Databases

• Deleting a database
C t t d l t D t b (St i) d l t th d t bContext. deleteDatabase(String name) deletes the database
with the specified name
Returns true if the database was successfully deleted or false y
if not (e.g. database does not exist)

Delete database “test.db”

boolean success = this.deleteDatabase("test.db);

Using Databasesg
SQLite Databases

• Opening a database
C t t D t b (St i fil C F t f t)Context.openDatabase(String file, CursorFactory factory)
opens an existing database and returns a SQLiteDatabase
object
Throws a FileNotFoundException if the database does not
exist yet

Create a database with the name “test.db” (can be any name)

SQLiteDatabase dbase = this.openDatabase("test.db", null);
…
dbase.close();

Optional CursorFactory parameter

Don’t forget to close the database at the end

Using Databasesg
SQLite Databases

• Non-Query SQL Statements
SQLit D t b SQL(St i l) b d t tSQLiteDatabase.execSQL(String sql) can be used to execute
non-query SQL statements, that is statements without a result
Includes CREATE TABLE, DROP TABLE, INSERT etc., ,

Examples:

dbase.execSQL("CREATE TABLE test (_id INTEGER PRIMARY KEY, someNumber
INTEGER);");

Create a table with the name “test” and two parameters

dbase.execSQL("Insert into test (_id, someNumber) values(1,8);");

Insert a tuple into the database

dbase.execSQL("DROP TABLE test");

Drop the table “test”

Using Databasesg
SQLite Databases

• Query SQL Statements - Cursors
A d id t i t th h ltAndroid uses cursors to navigate through query results
Cursors are represented by the object
android.database.Cursor
A cursor is simply a pointer that “jumps” from one tuple of the
query’s result to the next (or the previous or the first or …)
Th t th d t f th t l it i l t d t thThe cursor returns the data of the tuple it is located at the
moment

Table “test”

_id someNumber
1 8

Table test

1 8

2 10

3 2

Using Databasesg
SQLite Databases

To create a cursor, a query has to be executed either by SQL using , q y y g
rawQuery() or by more elaborated methods like query()

Cursor cur = dbase.rawQuery("SELECT * FROM test", null);

if (cur != null) { Attributes are retrieved
int numColumn = cur.getColumnIndex("someNumber");
if (cur.first()) {
do {

int num = cur.getInt(numColumn);
Cursor offers different methods to
retrieve different datatypes like

I (i i d) S i (i i d)

with their index

…do something with it…
} while (cur.next());

}
}

getInt(int index) getString(int index)
etc

next() moves the cursor to the next row. It returns
false if no more row is available. Other possible
moves are previous() and first()moves are previous() and first()

Using the IDE to Check Files and Databases

• The Android plug-in provides a view to check all
created files and databasescreated files and databases

• 1. Add File Explorer view to the IDE

a) click

c) click

b) click

Using the IDE to Check Files and Databases

• 2. Check Files and Databases at
/data/data/<package name>/files|databases/data/data/<package_name>/files|databases

click

Th lti t f th tThe ultimate proof that
Android accepts ANY file
and database name

Network Access

• Android also supports network access to access files
remotely (through the network)remotely (through the network)

Two major packages:• Two major packages:
java.net.* contains the standard Java network APIs
android net * adds additional helper classes to the standardandroid.net. adds additional helper classes to the standard
Java APIs

Content Providers

• All preferences, files and databases created by an
Android application are privateAndroid application are private

• To share data with other applications, an application
has to create a Content Providerhas to create a Content Provider

• To retrieve data of another application its content
provider has to be calledprovider has to be called

• Androids native Content Providers include:
CallLog: information about placed and received callsa og o a o abou p a d a d d a
Settings.System: system settings and preferences

Exercise
• Chat-history Application

Based on exercise 2Based on exercise 2
Functionality

changing the status (available etc.)
is stored and automatically set onis stored and automatically set on
starting the application

the chat history has to be stored
automaticallyau o a ca y

o each message has to be stored
together with a timestamp

two buttons to display the history
DAY ALL

SHOW HISTORY:

o of the day
o of all chat sessions

any storing mechanism is ok

DAY ALL

•Any improvements on the design or
additional functionality is encouragedadditional functionality is encouraged

See you next meeting!y g

