
The Gilbert-Johnson-Keerthi Distance Algorithm

Patrick Lindemann

Abstract— This paper gives an overview of the Gilbert-Johnson-Keerthi (GJK) algorithm, which provides an iterative method for
computing the euclidian distance between two convex sets in m-dimensional space with linear time complexity. The algorithm is very
versatile and several enhancements have been published since it was first introduced. Apart from some historical information, this
paper will provide the mathematical basics required to understand GJK, mainly support mappings and the Minkowski Difference of
geometrical objects. The algorithm will be explained and examples of enhancements and applications are given.

Index Terms—GJK, Proximity Queries, Distance Computation, Collision Detection, Convex Hull, Minkowski Difference, Support
Mapping

1 INTRODUCTION

This research paper shall provide an insight into a classic algorithm
for distance computations: the Gilbert-Johnson-Keerthi distance al-
gorithm or simply GJK algorithm. This particular distance algorithm
computes the euclidian distance between two convex objects and is
also able to return the objects’ respective points closest to each other.
The algorithm provides a linear time complexity, dependent on the
number of vertices of which the pair of objects consists. Furthermore,
it is not restricted to a specific number of dimensions and can therefore
be used in any m-dimensional space. The algorithm’s comparably low
complexity is a consequence of its mathematical programming origin
[5]. GJK uses support mapping functions to describe geometrical ob-
jects and reduces the problem of computing the distance between two
objects to the simpler task of computing the distance of one object
to the origin, which is achieved by using the Minkowski Difference.
Both ideas are thoroughly explained later (see chapter 3). Although
the algorithm might be hard to grasp in the beginning, it is very pop-
ular, since the implementation is much easier [6]. To compute the
actual distance, the GJK algorithm approaches the final result by us-
ing simplices (see chapter 3.1) contained in the distant object. Itera-
tively, simplices closer to the origin are constructed until the distance
to the current simplex equals the distance to the whole object. GJK
uses Johnson’s so-called Distance Subalgorithm (see chapter 4.2) to
calculate the distance from the origin to the current simplex [5].

This introduction gave a brief overview over the algorithm. The
next section provides some information about the algorithm’s history.
Section 3 explains some basic mathematical knowledge required to
grasp the functionality of GJK, before the actual algorithm will be
presented in section 4. Section 5 gives examples for enhancements
and applications of the algorithm and section 6 provides the paper’s
conclusion.

2 HISTORY

The original GJK algorithm was described by E.G. Gilbert, D.W. John-
son and S.S. Keerthi in 1988 [5] and was at that time restricted to
compute the distance between two convex polyhedra, which are ge-
ometrical bodies defined by solely flat faces . In 1990, E.G. Gilbert
and C.-P. Foo enhanced the original algorithm to handle all kinds of
convex objects [4]. Due to the algorithm’s age, the part of it called the
Distance Subalgorithm (see chapter 4.2) is somewhat outdated, since
more modern and mathematically intuitive procedures can be used to-
day. As a result of this, when the Gilbert-Johnson-Keerthi distance al-
gorithm is applied, part of it is often replaced by subalgorithms more
adapted to the actual problem.

• Patrick Lindemann is studying Media Informatics at the University of
Munich, Germany, E-mail: patrick.lindemann@campus.lmu.de

• This research paper was written for the Media Informatics Proseminar on
"Algorithms in Media Informatics", 2009

3 PRELIMINARIES

This section explains a number of mainly mathematical issues vital to
the understanding of the GJK algorithm.

3.1 Simplex
To approach the actual distance to an object, GJK iteratively chooses
a simplex (see figure 1) within the object and computes the distance
to this simplex. A n-simplex is a polytope of n+1 vertices in n-
dimensional space. For GJK, the two most interesting cases are nat-
urally two-dimensional and three-dimensional space. Therefore, the
algorithm uses a 2-simplex respectively a triangle for two-dimensional
space and a 3-simplex respectively a tetrahedron for three-dimensional
space [5].

Figure 1. Example simplices for one-, two and three-dimensional space.

3.2 Convex Hull
The convex hull (see figure 2) of a finite set of points A is the smallest
convex set still entirely containing A. Thus, the cardinality of a convex
hull is always smaller or equal to the cardinality of the original set,
for potential inner points need not be considered for the convex hull.
GJK works with convex objects only and approaches the distance of
an actual object by computing distances to simplices within the object.
Therefore, it might be necessary to use the convex hull of the current
simplex for calculations, if it is not a convex shape itself [5, 6]. The
convex hull of a set A is denoted by CH(A).

Figure 2. A set of points and its corresponding convex hull.

3.3 Support Mapping Functions
The use of so-called support mappings (see figure 3) is a major rea-
son for the quickness of the GJK algorithm. Support mappings are
an alternative way to completely describe geometrical objects, other
than by storing the vertices of an object or an objects hull. A sup-
port mapping function sA(v) of a convex set A maps a vector v to a
specific point of the same set, called the "support point". The support
point is the one point within A, that is the most extreme in direction v.
Therefore, for the general case of a convex set A, the respective sup-
port mapping function has to provide a result such that the following
is fulfilled [5, 6]:
v · sA(v) = max{v · x : x ∈ A}.

Figure 3. Support points of vector v for a polygon A and a circle B.

However, more precise support mapping functions can be given for
most primitives, so that it is not required to compute all possible prod-
ucts v · x. As an example, support points of circles or spheres can
always be calculated according to the formula c+ r · v

||v|| , with c being
the point at the center and r being the radius of the respective circle or
sphere [6]. Thus, support points for primitives can be calculated very
easily, which makes the Gilbert-Johnson-Keerthi distance algorithm
all the faster and very versatile. As complex objects can sometimes
be comfortably disassembled into several primitives, it could still be
possible to gain a time advantage by computing the distances to the
primitives separately and taking the nearest as the result.

3.4 Minkowski Difference
The Minkowski Sum C (see figure 4) of two convex sets A and B is
another convex set defined as follows:
C = A+B = {x+ y : x ∈ A,y ∈ B}.
In other words, every point of B is added to every point of A and the
result of the operation forms the new object C. Since the result is a set
as well, possible duplicate points evolved from the addition are elimi-
nated. Thus, the cardinality of C is always smaller or equal to the sum
of the cardinalities of A and B. [5] Although the term "Minkowski Dif-
ference" is sometimes used differently in other contexts [6], it will be
treated analogically to the Minkowski Sum in the following. Thus, the
Minkowski Difference C of two sets A and B follows the definition:
C = A−B = {x− y : x ∈ A,y ∈ B}.
Instead of adding all points of B, they are now subtracted from all

Figure 4. Example for the minkowski sum of two geometrical objects.

points of A. The Minkowski Difference is the key to the algorithm’s
idea of reducing the proximity problem of two objects to one object.
The distance of two convex sets A and B is equal to the distance of their
Minkowski Difference A−B to the origin [5]. This fact is used by the
GJK algorithm and the same procedure can be applied to A−B with
almost no change to the algorithm. Since GJK uses support mapping
functions for representing the geometry of objects, only these have
to be adapted to the new convex set. In case of the Minkowski Sum
and Minkowski Difference, this can be achieved simply by adding or
subtracting the support mappings of its single components in the fol-
lowing way:
sA+B(v) = sA(v)+ sB(v)
sA−B(v) = sA(v)− sB(−v)
Furthermore, if two objects are intersecting, it can be easily deter-
mined since the origin is then contained in the Minkowski Difference
of these objects.

4 THE ALGORITHM

This section provides an in-depth description of the enhanced Gilbert-
Johnson-Keerthi distance algorithm by Gilbert and Foo [4], which can
be applied to all convex objects instead of merely convex polytopes,
as originally described by Gilbert, Johnson and Keerthi [5]. The al-
gorithm computes the euclidian distance d(A,B) between two convex
objects A and B, with the euclidian distance being defined by:
d(A,B) = min{||x− y|| : x ∈ A,y ∈ B}.

Figure 5. First four iterations of the GJK algorithm [6].

The algorithm can also provide the two points a ∈ A respectively
b ∈ B closest to each other, meaning that ||a−b|| = d(A,B) [6].
Instead of actually computing the distance between objects A and B,
the GJK algorithm solves the problem in a reduced form, computing
the distance between the origin and the Minkowski Difference
C = A− B of A and B, which is equal to the desired result. Let
v(C) ∈C be defined as the point in C nearest to the origin, such that
d(A,B) = ||v(A−B)||= ||v(C)||= min{||x|| : x ∈C}.

4.1 The Main Algorithm
In each iteration, GJK constructs a simplex within C that lies nearer
to the origin than the simplex constructed in the previous iteration. In
regard to these simplices, we take the following assumptions [6]:

• Let Wk be the set of vertices of the simplex in the k-th iteration
of the algorithm (k >= 1).

• Let vk be the point of the convex hull of the simplex, which is
closest to the origin, i.e. vk = v(CH(Wk)).

In detail, the Gilbert-Johnson-Keerthi distance algorithm proceeds in
the following way [6] (see figure 5):

1. Initialization step:

• Set k = 0.

• Set the simplex set W0 = /0.

• Let v0 be an arbitrary point within C.

2. Compute the support point wk = sc(−vk) in direction −vk.

3. If wk is no more extreme than vk in direction −vk: return ||vk|| .

4. Add wk to the current simplex set Wk.

5. Compute vk+1 = v(CH(Wk ∪{wk})), the point closest to the ori-
gin within the new simplex.

6. Make Wk+1 the smallest convex subset of Wk ∪{wk} still con-
taining vk+1.

7. Increment k, jump to step 2.

4.2 The Distance Subalgorithm
There is one part of the algorithm which needs further explanation:
Johnson’s Distance Subalgorithm [5]. It is responsible for computing
the closest point to the origin of the current iteration’s simplex (see
step 5). Basically, it searches all possible subsets of the current sim-
plex, i.e. dependent on the number of dimensions, each vertice, each
edge, each face and so on, including the entire simplex itself. For each
of these subsets, a system of linear equations is solved in a recursive
procedure. The subalgorithm is somewhat outdated, since it originates
from a time at which math operations where expensive. It represents
an algebraic, but hardly intuitive approach [7, 2]. The original subal-
gorithm will not be discussed in detail here, for it would go beyond
the scope of this paper. However, an alternative by Christer Ericson
[3] for the subalgorithm will be presented in the next section.

5 ENHANCEMENTS AND APPLICATIONS

Basically, the Gilbert-Johnson-Keerthi distance algorithm can easily
be enhanced, e.g. by replacing the Distance Subalgorithm by another
procedure or by a specific way of constructing the simplices in each
iteration.

Stephen Cameron presented an enhancement of GJK in 1997, which
promises almost constant time complexity. It uses a method called
"hill climbing" when computing the support points in each iteration,
i.e. the support point of the last iteration is buffered and in the current
iteration, the neighbours of this vertice are checked at first. For larger
convex hulls, this approach supposedly brings dramatic improvements

in computation time [1]. Furthermore, Cameron’s enhancement pro-
vides the possibility to compute the penetration distance of two inter-
secting objects.

An alternative for Johnson’s Distance Subalgorithm was presented
by Ericson at SIGGRAPH 2004 [2]. It provides a geometrical rather
than algebraic approach to the problem, making the subalgorithm more
intuitive and easier to make robust, while remaining mathematically
equivalent to the original subalgorithm. It uses straightforward func-
tions for finding the closest point on a primitive. As an example,
the operating method of a function ClosestPointOnTriangleToPoint()
will be briefly explained. Based on the triangle of which the distance
should be computed, it is determined in which Voronoi region (see fig-
ure 6) the distant point (usually the origin) lies. Based on the two types
of Voronoi regions (VA/VB/VC or EAB/EAC/EBC), a case differentiation
is made and equations are solved, dependent on the case:

1. Distant point X lies within a vertice (V) region. Example equa-
tions for region VA:

• AX ·AB≤ 0

• AX ·AC ≤ 0

2. Distant point X lies within an edge (E) region. Example equa-
tions for region EAB:

• (BC×BA)×BA ·BX ≥ 0

• AX ·AB≥ 0

• BX ·BA≥ 0

Figure 6. Using Voronoi regions for case differentiation [2].

A typical application of the Gilbert-Johnson-Keerthi distance algo-
rithm is any kind of physics engine that uses real-time collision de-
tection, which is commonly used in games or simulation systems. For
instance, Ericson describes a way to effectively simplify a collision de-
tection between two moving objects [2]. If two objects A and B both
move along a specific vector vA respectively vB, you can easily com-
press both movements into one by building the vector v = vA − vB.
Assuming that object A is now moving along this vector v, object B
can be regarded as fixed to its position, transforming the problem into
a simpler one. Only one moving object has to be tested against a sta-
tionary object. If object A is now extended by adding the vector v to all
of its vertices, you receive an object which contains all the area that A
would have covered in its movement. Now, two stationary objects can
be tested against each other in the familiar way with GJK. The proce-
dure can be further sped up by starting an iteration with the simplex
from the previous iteration, since it is likely to be close to the desired
result in natural movements.

6 CONCLUSION

A fast and versatile procedure for computing the distance between con-
vex objects was presented. Despite its age of 20 years, the Gilbert-
Johnson-Keerthi distance algorithm is popular and widely used, since
it is easy implementable, can handle many types of objects and is with
linear time complexity a very fast algorithm in terms of collision detec-
tion procedures. It can be used for proximity queries, path planning or
real-time collision detection. GJK’s mathematical background is the
reason why the algorithm takes some time to be mastered. However, it
is the same reason that makes the algorithm so fast and versatile, espe-
cially the fact, that geometrical objects are solely described by support
mappings. When applied, the GJK algorithm is usually adapted to the
actual problem to be solved, and parts of it replaced by more suitable
or intuitive procedures, providing improved time complexities up to
constant time.

REFERENCES

[1] S. Cameron. Enhancing gjk: Computing minimum and penetration dis-
tances between convex polyhedra. In Proceedings of International Con-
ference on Robotics and Automation, pages 3112–3117, 1997.

[2] C. Ericson. The gilbert-johnson-keerthi (gjk) algorithm. SIGGRAPH Pre-
sentation, 2004. Sony Computer Entertainment America.

[3] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2004.
[4] E. G. Gilbert and C.-P. Foo. Computing the distance between general con-

vex objects in three-dimensional space. In IEEE Transactions on Robotics
and Automation, volume 6, pages 53–61, February 1990.

[5] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for com-
puting the distance between complex objects in three-dimensional space.
In IEEE Journal of Robotics and Automation, volume 4, pages 193–203,
April 1988.

[6] G. van den Bergen. A fast and robust gjk implementation for collision
detection of convex objects. Technical report, Department of Mathematics
and Computing Science, Eindhoven University of Technology, 1999.

[7] G. van den Bergen. Collision Detection in Interaction 3D Environments.
Morgan Kaufmann, 2003.

