Arbeitskreis Hardware

Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz
michael.rohs@ifi.lmu.de
MHCI Lab, LMU München
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic (preliminary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Introduction to embedded interaction, microcontrollers, hardware & software tools</td>
</tr>
<tr>
<td>9.5</td>
<td>keine Veranstaltung (CHI)</td>
</tr>
<tr>
<td>16.5</td>
<td>ISP adapter soldering, AVR architecture</td>
</tr>
<tr>
<td>23.5</td>
<td>LED displays, LED multiplexing, transistors, electronics basics</td>
</tr>
<tr>
<td>30.5</td>
<td>AVR architecture, AVR assembler, sensors: light, force, acceleration, etc.</td>
</tr>
<tr>
<td>6.6</td>
<td>PCB design & fabrication, EAGLE, 3D printing</td>
</tr>
<tr>
<td>13.6</td>
<td>keine Veranstaltung (Pfingsten)</td>
</tr>
<tr>
<td>20.6</td>
<td>Actuation: stepper motors, servo motors, I2C: interfacing to other chips</td>
</tr>
<tr>
<td>27.6</td>
<td>USB to serial chips, storage on memory cards, capacitive sensors</td>
</tr>
<tr>
<td>4.7</td>
<td>Displays (character LCDs, graphics LCDs), audio (speakers, amplification, op-amps)</td>
</tr>
<tr>
<td>11.7</td>
<td>Communication: fixed-frequency RF, ZigBee, Bluetooth</td>
</tr>
<tr>
<td>18.7</td>
<td>Project</td>
</tr>
<tr>
<td>25.7</td>
<td>Project</td>
</tr>
</tbody>
</table>
INTERFACING HARDWARE
ATtiny45 Universal Serial Interface (USI)

• Two modes: two-wire mode, three-wire mode

• Serial Port Pins

• PB2
 – SCL: USI Clock (Two Wire Mode)
 – USCK: USI Clock (Three Wire Mode)

• PB1
 – DO: USI Data Output (Three Wire Mode)
 – MISO: SPI Master Data Input / Slave Data Output

• PB0
 – SDA: USI Data Input (Two Wire Mode)
 – DI: USI Data Input (Three Wire Mode)
 – MOSI: SPI Master Data Output / Slave Data Input

Source: Atmel Datasheet
Universal Serial Interface, Block Diagram

- **USIDR**: Data Register (shift register)
- **USIBR**: Buffer Register (buffers data register)
- **USISR**: Status Register
- **USICR**: Control Register

Source: Atmel Datasheet
USI Two-Wire Mode, I2C

Source: Atmel Datasheet

Shift direction

Open drain bus (wired-and)
USI Three-Wire Mode

Source: Atmel Datasheet

 registers interchanged after 8 clocks
ATtiny45 USI Registers

- **USIDR**: Data Register (shift register)
 - [Diagram: MSB, 7:0 bits, R/W]

- **USIBR**: Buffer Register (buffers data register)
 - [Diagram: R/W]

- **USISR**: Status Register
 - **SIF**: Start condition interrupt flag (two-wire mode)
 - **OIF**: Overflow interrupt flag (4-bit counter)
 - **PF**: Stop condition flag (two-wire mode, bus arbitration)
 - **DC**: Data output collision (two-wire mode, bus arbitration)
 - **CNT3..0**: 4-bit counter (counts bits sent/received)

Figure sources: Atmel Datasheet
ATtiny45 USI Registers

- **USICR: Control Register**
 - **SIE**: Start Condition Interrupt Enable
 - **OIE**: Counter Overflow Interrupt Enable
 - **WM1,WM0**: Wire Mode
 - 0,0: port pins operate as normal
 - 0,1: three-wire mode (DO, DI, USCK)
 - 1,0: two-wire mode (SDA, SCL, bi-directional, open drain)
 - 1,1: two-wire mode (as (1,1), but SCL held low on counter overflow)
 - data direction bits need to be set correctly
 - **CS1,CS0**: Clock Source Select
 - **CLK**: Clock Strobe
 - **TC**: Toggle Clock Port Pin

Figure sources: Atmel Datasheet
Universal Serial Bus (USB)

- High data rates (difficult to process with ATtiny)
 - USB 1.0: 1.5 Mbit/s (Low-Speed) and 12 Mbit/s (Full-Speed)
 - USB 2.0: 480 Mbit/s (High-Speed)
 - USB 3.0: 5 Gbit/s (Super-Speed)

- 500mA max. (at $V_{CC} = 5V$)

- Some AVRs have built-in USB modules
Universal Asynchronous Receiver/Transmitter (UART)

- Sequential transmission/reception of a sequence of bits
- Framing (start bit = 0, stop bit = 1; 8 data bits, no parity bit)

<table>
<thead>
<tr>
<th>Start (0)</th>
<th>Bit 0 (lsb)</th>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
<th>Bit 4</th>
<th>Bit 5</th>
<th>Bit 6</th>
<th>Bit 7 (msb)</th>
<th>Stop (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Timing diagram

- Hardware handshake: Request-to-send, clear-to-send
USB to Serial UART
FTDI FT232RL

• UART = Universal Asynchronous Receiver/Transmitter

• http://www.ftdichip.com/Products/ICs/FT232R.htm

Source: FTDI Datasheet
FTDI FT232RL Virtual COM Port Drivers

- Virtual COM port drivers
 - http://www.ftdichip.com/Drivers/VCP.htm

- USB device appears as virtual COM port
 - cd /dev
 - ls -l | grep usb
 - cu.usbserial-FTF56DZT
tty.usbserial-FTF56DZT

- Shows up in System Profiler
Use Virtual COM Port in Java

• Requires Java Serial Communications API
 – various implementations

• Windows

• Mac OS X, Linux

 – https://github.com/nyholku/purejavacomm
 – http://iharder.sourceforge.net/current/java/
Example: Sending to VCP in Java

```java
import java.io.*;
import java.util.*;
import gnu.io.*;

public static void main(String[] args) throws Exception {
    Enumeration ports = CommPortIdentifier.getPortIdentifiers();
    while (ports.hasMoreElements()) {
        CommPortIdentifier portId = (CommPortIdentifier) ports.nextElement();
        if (portId.getPortType() == CommPortIdentifier.PORT_SERIAL) {
            if (portId.getName().equals("/dev/tty.usbserial-FTF56DZT")) {
                SerialPort sp = (SerialPort) portId.open("HelloWorld", 2000);
                OutputStream os = sp.getOutputStream();
                sp.setSerialPortParams(9600,
                    SerialPort.DATABITS_8,
                    SerialPort.STOPBITS_1,
                    SerialPort.PARITY_NONE);
                os.write("hello world").getBytes();
                try { Thread.sleep(2000); } catch (InterruptedException ex) {} 
                sp.close();
            }
        }
    }
}
```
Direct Driver Interface

• Virtual COM Port (VCP) driver has limitations
• Full access to FT232R chip using proprietary driver
 – http://www.ftdichip.com/Drivers/D2XX.htm
• Example: Reading configuration data stored in EEPROM

  ```c
  FT_STATUS ftStatus;
  FT_HANDLE ftHandle0;
  FT_PROGRAM_DATA Data;
  FT_DEVICE ftDevice;
  ftStatus = FT_Open(iport, &ftHandle0);
  ftStatus = FT_GetDeviceInfo(ftHandle0, &ftDevice, NULL, ...);
  ftStatus = FT_EE_Read(ftHandle0, &Data);
  FT_Close(ftHandle0);
  ```
FT232R EEPROM Contents

ftHandle0 = 0x100826400
Signature1 = 0
Signature2 = -1
Version = 2
VendorId = 0x0403
ProductId = 0x6001
Manufacturer = FTDI
ManufacturerId = FT
Description = UM232R USB <-> Serial
SerialNumber = FTF56DZT
MaxPower = 100
PnP = 1
SelfPowered = 0
RemoteWakeup = 1
UseExtOsc = 0x0
HighDriveIOs = 0x0
EndpointSize = 0x40

PullDownEnableR = 0x0
SerNumEnableR = 0x1
InvertTXD = 0x0
InvertRXD = 0x0
InvertRTS = 0x0
InvertCTS = 0x0
InvertDTR = 0x0
InvertDSR = 0x0
InvertDCD = 0x0
InvertRI = 0x0
Cbus0 = 0x2
Cbus1 = 0x3
Cbus2 = 0x1
Cbus3 = 0x1
Cbus4 = 0x5
RIIsVCP = 0x0
Mass Data Storage

- Microcontrollers have extremely limited storage (EEPROMs for config. data)
- External I2C EEPROMs: still limited
- Memory cards: large capacity, easy to interface
- Example: Micro-SD cards
 - extended from MultiMediaCard (MMC)
 - max. 2GB for SDSC (Standard-Capacity)
 - file system: typically FAT16
 - communication: SPI (Serial Peripheral Interface)
 - $V_{CC} = 3.3V$, $I = 20-100$ mA
- Details: www.uni-koblenz.de/~physik/informatik/ECC/sd.pdf
TOUCH SENSORS
Capacitive Touch Sensor Controller Freescale Semiconductor MPR121

- VCC = 1.71..3.6 V
- I = 29 µA at 16 ms sampling interval
- 12 capacitance sensing inputs, connect to electrodes
- I²C interface

Source: Freescale Semiconductor Datasheet
Capacitive Touch Sensor Controller
Freescale Semiconductor MPR121

Source: Freescale Semiconductor Datasheet
Capacitive Touch Sensor Controller
Freescale Semiconductor MPR121

- Programmable charge current and charge time
 - $I = 1..63\mu A$, $T = 0.5-63\ \mu s$

$$C = \frac{Q}{U} = \frac{I \cdot T}{U} \iff U = \frac{I \cdot T}{C}$$

- ADC measures voltage after charge time
 - Measured voltage inversely proportional to capacitance

- Filters remove high and low frequency noise

- Can be configured for touch recognition
 - Debouncing, touch and release thresholds

- Auto-calibration
 - Continuously measures baseline capacitance
Capacitive Touch Sensor IC
Analog Devices AD7745/AD7746

- 24-Bit capacitance-to-digital converter
 - Temperature sensor
 - Update rate: 10 Hz to 90 Hz
 - $V_{CC} = 2.7..5.25V$, $I = 0.7mA$

- I2C interface

- Operation
 - EXC = square-wave excitation signal
 - CX = capacitance
 - CIN = modulator input
 - modulator samples charge, data filtered, scaled (calibration)

Source: FTDI Datasheet
Registers

- read/write via I2C

<table>
<thead>
<tr>
<th>Register</th>
<th>Address Pointer (Dec)</th>
<th>Address Pointer (Hex)</th>
<th>Dir</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>0</td>
<td>0x00</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EXCERR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>RDY</td>
</tr>
<tr>
<td></td>
<td>RDYVT</td>
</tr>
<tr>
<td></td>
<td>RDYCAP</td>
</tr>
<tr>
<td>Cap Data H</td>
<td>1</td>
<td>0x01</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive channel data—high byte, 0x00</td>
</tr>
<tr>
<td>Cap Data M</td>
<td>2</td>
<td>0x02</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive channel data—middle byte, 0x00</td>
</tr>
<tr>
<td>Cap Data L</td>
<td>3</td>
<td>0x03</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive channel data—low byte, 0x00</td>
</tr>
<tr>
<td>VT Data H</td>
<td>4</td>
<td>0x04</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Voltage/temperature channel data—high byte, 0x00</td>
</tr>
<tr>
<td>VT Data M</td>
<td>5</td>
<td>0x05</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Voltage/temperature channel data—middle byte, 0x00</td>
</tr>
<tr>
<td>VT Data L</td>
<td>6</td>
<td>0x06</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Voltage/temperature channel data—low byte, 0x00</td>
</tr>
<tr>
<td>Cap Setup</td>
<td>7</td>
<td>0x07</td>
<td>R/W</td>
<td>CAPEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CIN2(^1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPDIFF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPCHOP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VT Setup</td>
<td>8</td>
<td>0x08</td>
<td>R/W</td>
<td>VTEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VTMD1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VTMD0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXTREF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VTSHORT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VTCHOP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXC Setup</td>
<td>9</td>
<td>0x09</td>
<td>R/W</td>
<td>CLKCTRL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCON</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCLVL1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXCLVL0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Configuration</td>
<td>10</td>
<td>0x0A</td>
<td>R/W</td>
<td>VFTS1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VFTS0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPFS2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPFS1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAPFS0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MD2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MD1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MDO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cap DAC A</td>
<td>11</td>
<td>0x0B</td>
<td>R/W</td>
<td>DACENA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DACA—7-Bit Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cap DAC B</td>
<td>12</td>
<td>0x0C</td>
<td>R/W</td>
<td>DACBENB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DACB—7-Bit Value</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cap Offset H</td>
<td>13</td>
<td>0x0D</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive offset calibration—high byte, 0x80</td>
</tr>
<tr>
<td>Cap Offset L</td>
<td>14</td>
<td>0x0E</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive offset calibration—low byte, 0x00</td>
</tr>
<tr>
<td>Cap Gain H</td>
<td>15</td>
<td>0x0F</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive gain calibration—high byte, factory calibrated</td>
</tr>
<tr>
<td>Cap Gain L</td>
<td>16</td>
<td>0x10</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Capacitive gain calibration—low byte, factory calibrated</td>
</tr>
<tr>
<td>Volt Gain H</td>
<td>17</td>
<td>0x11</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Voltage gain calibration—high byte, factory calibrated</td>
</tr>
<tr>
<td>Volt Gain L</td>
<td>18</td>
<td>0x12</td>
<td>R/W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Voltage gain calibration—low byte, factory calibrated</td>
</tr>
</tbody>
</table>

Source: FTDI Datasheet
ATMEL QTouch

• Some AVRs integrate capacitive sensing hardware
 – Can also be implemented on standard microcontrollers

• ATMEL QTouch library