Chapter 2 (May 19th, 2011, 2-4pm):
3D Modeling
The 3D rendering pipeline (our version for this class)

```
3D models in model coordinates → 3D models in world coordinates → 2D Polygons in camera coordinates → Pixels in image coordinates
```

- Scene graph
- Camera
- Animation, Interaction
- Rasterization
- Lights
Chapter 2 - 3D modeling

• Geometric Primitives
• Constructive Solid Geometry (CSG)
• Polygon Meshes
• Extrusion & Rotation
• Interpolation Curves
• Levels Of Detail (LOD)
• Volume- and Point-based Graphics
Geometric Primitives

- Simplest way to describe geometric objects
- Can be used directly by some renderers (e.g., Ray tracing)
- Can be transformed into polygons easily (Tessellation)
- Can be transformed into Voxels easily
- Useful for creating simple block world models

- Good start for modeling in VRML/X3D
- Objects can intersect/penetrate
Box

- Described by (width, length, height)
- Origin usually in the center
- 8 points, 12 edges, 6 rectangles, 12 triangles
Pyramid, Tetrahedron

• Basis of pyramid = rectangle
• given by (width, length, height)
• 5 points, 8 edges, 6 triangles

• Basis of tetrahedron = triangle
• given by (width, length, height)
• 4 points, 6 edges, 4 triangles,
Cylinder, cone, truncated cone

- Cylinder given by (radius, height)
- Number of polygons dep. on tesselation

- Cone given by (radius, height)
- Number of polygons dep. on tesselation

- Truncated cone given by (r1, r2, height)
- Number of polygons dep. on tesselation

- Which of these would you rather have if you only had one available?
Sphere, Torus

- Sphere is described by (radius)
- Torus is defined by (radius1, radius2)
- Number of polygons dep. on tesselation
Geometric Primitives: Summary

- Not all of these exist in all graphics packages
- Some packages define additional primitives (dodecahedron, teapot...;-)

- Practically the only way to model VRML or X3D in a text editor
- Can give quite accurate models
- Extremely lean! very few polygons

- Think of application areas even in times of powerful PC graphics cards!
Chapter 2 - 3D modeling

- Geometric Primitives
- **Constructive Solid Geometry (CSG)**
- Polygon Meshes
- Extrusion & Rotation
- Interpolation Curves
- Levels Of Detail (LOD)
- Volume- and Point-based Graphics
Constructive Solid Geometry

- Basic idea: allow geometric primitives and all sorts of boolean operations for combining them
- Can build surprisingly complex objects
- Good for objects with holes (often the simplest way)
- Basic operations:
 - **Or**: combine the volume of 2 objects
 - **And**: intersect the volume of 2 objects
 - **Not**: all but the volume of an object
 - **Xor**: all space where 1 object is, but not both
- Think about:
 - wheels of this car
 - tea mug
 - coke bottle (Problems??)
CSG: a complex Example

• rounded_cube = cube \textbf{And} sphere

• cross = cyl1 \textbf{Or} cyl2 \textbf{Or} cyl3

• result = rounded_cube \textbf{And} (Not cross)

• Think: Are CSG operations associative?
 –

• ...commutative?
 –

Chapter 2 - 3D modeling

• Geometric Primitives
• Constructive Solid Geometry (CSG)
• Polygon Meshes
• Extrusion & Rotation
• Interpolation Curves
• Levels Of Detail (LOD)
• Volume- and Point-based Graphics
Polygon Meshes

- Describe the surface of an object as a set of polygons
- Mostly use triangles, since they are trivially convex and flat
- Current graphics hardware is optimized for triangle meshes

Face-Vertex Meshes

Polygon Meshes: optional data

• Color per vertex or per face: produces colored models
• Normal per vertex: allows free control over the normals
 – can mix smooth and sharp edges
 – wait for shading chapter ;-)
• Texture coordinates per vertex
 – wait for texture chapter ;-)
Polygon Meshes: other descriptions

- Other representations for polygon meshes exist
 - optimized for analyzing and modifying topology
 - optimized for accessing large models
 - optimized for fast rendering algorithms
 - optimized for graphics hardware

- Example: triangle strip
 - needs N+2 points for N polygons
 - implicit definition of the triangles
 - optimized on graphics hardware

Practical example: VRML IndexedFaceSet

Quiz: what is given by the following piece of VRML code??

gameIndex IndexedFaceSet {
 coord Coordinate {
 point [-1 0 1, 1 0 1, -1 0 -1, 1 0 -1, 0 1 0]
 }
 coordIndex [0, 1, 4, -1,
 1, 3, 4, -1,
 3, 2, 4, -1,
 2, 0, 4, -1,
 1, 0, 2, 3, -1]
}
Approximating Primitives by Polygon Meshes

• Trivial for non-curved primitives...
• The curved surface of a cylinder, sphere etc. must be broken down into polygons somehow (Tesselation).
• Not trivial and certainly not unique!
• Goal: small polygons for strong curvature, larger ones for areas of weak curvature
 – This means ideally constant polygon size for a sphere
 – Where do I know this problem from?? Hmmm...

http://www.evilbastard.org/slight/tessellation.gif
Chapter 2 - 3D modeling

• Geometric Primitives
• Constructive Solid Geometry (CSG)
• Polygon Meshes
• Extrusion & Rotation
• Interpolation Curves
• Levels Of Detail (LOD)
• Volume- and Point-based Graphics
Extrusion (sweep object)

- Move a 2D shape along an arbitrary path
- possibly also scale in each step

http://www.cadimage.net/cadtutor/lisp/helix-02.gif
Rotation

- Rotate a 2D shape around an arbitrary axis
- Can be expressed by extrusion along a circle

- How can we model a vase?
- How a Coke bottle?
Chapter 2 - 3D modeling

• Geometric Primitives
• Constructive Solid Geometry (CSG)
• Polygon Meshes
• Extrusion & Rotation
• Interpolation Curves
• Levels Of Detail (LOD)
• Volume- and Point-based Graphics
Interpolation Curves, Splines

- Original idea: „Spline“ used in ship construction to build smooth shapes:
 - Elastic wooden band
 - Fixed in certain positions and directions
 - Mathematically simulated by interpolation curves
 - Piecewise described by polygons
- Different types exist
- Control points may be on the line or outside of it.
Bezioer Curves (and Casteljau Algorithm)

- Bezier curves first used in automobile construction (1960s, Citroen)
- Degree 1: straight line interpolated between 2 points
- Degree 2: quadratic polynomial
- Degree 3: cubic bezier curve, described by cubic polynomial
- Curve is always contained in convex hull of points

Algorithm (defines line recursively):
- I1 is linearly interpolated between P1 and P2
- I2 ... between P2 and P3
- I3 ... between P3 and P4
- J1 ... between I1 and I2
- J2 ... between I2 and I3
- K ... between J1 and J2
- The bezier curve is the sum of all points K

see http://files.dmke.de/bezier.html!!!
Beziers patches

- Combine 4 Bezier curves along 2 axes
- Share 16 control points
- Results in a smooth surface
- Entire surface is always contained within the convex hull of all control points
- Border line is fully determined by border control points
- Several patches can be combined
 - Connect perfectly if border control points are the same.

- Other interpolation surfaces based on other curves
- Advantage: move just one control point to deform a larger surface...
Chapter 2 - 3D modeling

- Geometric Primitives
- Constructive Solid Geometry (CSG)
- Polygon Meshes
- Extrusion & Rotation
- Interpolation Curves
- Levels Of Detail (LOD)
- Volume- and Point-based Graphics
Levels of Detail

• Assume you have a very detailed model
• from close distance, you need all polygons
• from a far distance, it only fills a few pixels
• How can we avoid drawing all polygons?
Mesh reduction

- Original: ~5,000 polygons
- Reduced model: ~1,000 polygons
- ==> about 80% reduction

- Very strong reductions possible, depending on initial mesh

- Loss of shape if overdone

A method for polygon reduction

• Rossignac and Borell, 1992, „Vertex clustering“
• subdivide space into a regular 3D grid
• for each grid cell, melt all vertices into one
 – choose center of gravity of all vertices as new one
 – triangles within one cell disappear
 – triangles across 2 cells become edges (i.e. disappear)
 – triangles across 3 cells remain
• good guess for the minimum size of a triangle
 – edge length roughly = cell size
• yields constant vertex density in space
• does not pay attention to curvature

• more: http://mkrus.free.fr/CG/LODS/xrds/
Billboard

- A flat object which is always facing you
- Very cheap in terms of polygons (2 triangles)
- Needs a meaningful texture
- Example (from SketchUp): guy in the initial empty world rotates about his vertical axis to always face you
Chapter 2 - 3D modeling

- Geometric Primitives
- Constructive Solid Geometry (CSG)
- Polygon Meshes
- Extrusion & Rotation
- Interpolation Curves
- Levels Of Detail (LOD)
- Volume- and Point-based Graphics
Voxel data

- „Voxel“ = „Volume“ + „Pixel“, i.e., voxel = smallest unit of volume
- Regular 3D grid in space
- Each cell is either filled or not
- Memory increases (cubic) with precision

- Easily derived from CSG models
- Also the result of medical scanning devices
 - MRI, CT, 3D ultrasonic

- Volume rendering = own field of research
- Surface reconstruction from voxels

http://www.drububu.com/tutorial/voxels.html
Point-based graphics

- Objects represented by point samples of their surface („Surfels“)
- Each point has a position and a color
- Surface can be visually reconstructed from these points
 - purely image-based rendering
 - no mesh structure
 - very simple source data (x,y,z,color)

- Point-data is acquired e.g., by 3D cameras
- Own rendering techniques
- Own pipeline
- ==> own lecture ;-)