Chapter 3 (May 26th, 2011, 2-4pm):
The 3D camera and associated problems
The 3D rendering pipeline (our version for this class)
Chapter 3 - The 3D camera and associated problems

- 3D camera model
- Optimizations for the camera
- How to deal with Occlusion
- Rasterization
 - clipping
 - drawing lines
 - filling areas
The mathematical camera model

- **Perspective projection**
- **The Camera looks along the negative Z axis**
- **Image plane at Z=-1**
- **2D image coordinates**
 - $-1 < x < 1,$
 - $-1 < y < 1$

- **Two steps**
 - projection matrix
 - perspective division
Projection Matrix (one possibility)

\[
\begin{pmatrix}
 x_{\text{sicht}} \\
 y_{\text{sicht}} \\
 z_{\text{sicht}} \\
 w_{\text{sicht}}
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix} =
\begin{pmatrix}
 x \\
 y \\
 z \\
 -z
\end{pmatrix}
\]

• X and Y remain unchanged
• Z is preserved as well
• 4th (homogeneous) coordinate \(w \neq 1 \)
• Transformation from world coordinates into view coordinates
 • This means that this is not a regular 3D point
 – otherwise the 4th component \(w \) would be \(= 1 \)
• View coordinates are helpful for culling (see later)
Perspective Division

\[
\begin{pmatrix}
 x_{bild} \\
 y_{bild} \\
 z_{bild} \\
 w_{bild}
\end{pmatrix} = \frac{1}{w_{sicht}} \begin{pmatrix}
 x_{sicht} \\
 y_{sicht} \\
 z_{sicht} \\
 w_{sicht}
\end{pmatrix} = \begin{pmatrix}
 x_{sicht} / w_{sicht} \\
 y_{sicht} / w_{sicht} \\
 z_{sicht} / w_{sicht} \\
 w_{sicht} / w_{sicht}
\end{pmatrix} = \begin{pmatrix}
 x / -z \\
 y / -z \\
 -1 \\
 1
\end{pmatrix}
\]

- Divide each point by its 4th coordinate \(w \)

- Transformation from view coordinates into image coordinates

- since \(w = -z \) and we are looking along the negative Z axis, we are dividing by a positive value

- hence the sign of X and Y remain unchanged

- points further away (larger absolute Z value) will have smaller x and y
 - this means that distant things are smaller
 - points on the optical axis will remain in the middle of the image
Controlling the Camera

• So far we can only look along negative Z
• Other camera positions and orientations:
 – Let C be the transformation matrix that describes the camera’s position and orientation in world coordinates
 – C is composed from a translation and a rotation, hence can be inverted
 – transform the entire world by C\(^{-1}\) and apply the camera we know ;-)

• Other camera view angles?
• If we adjust this coefficient
 – scaling factor will be different
 – larger abs value means _________ angle.
 – could also be done in the division step

\[
\begin{pmatrix}
 x_{sicht} \\
 y_{sicht} \\
 z_{sicht} \\
 w_{sicht}
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix} =
\begin{pmatrix}
 x \\
 y \\
 z \\
 -z
\end{pmatrix}
\]
From image to screen coordinates

• Camera takes us from world via view to image coordinates
 • $-1 < x_{\text{image}} < 1$, $-1 < y_{\text{image}} < 1$

• In order to display an image we need to go to screen coordinates
 - assume we render an image of size (w,h) at position $(x_{\text{min}}, y_{\text{min}})$
 - then $x_{\text{screen}} = x_{\text{min}} + w(1+x_{\text{image}})/2$, $y_{\text{screen}} = y_{\text{min}} + h(1-y_{\text{image}})/2$
Chapter 3 - The 3D camera and associated problems

• 3D camera model
• Optimizations for the camera
• How to deal with Occlusion
• Rasterization
 – clipping
 – drawing lines
 – filling areas
Optimizations in the camera: Culling

- view frustum culling
- back face culling
- occlusion culling

View Frustum culling

- Goal: Just render objects within the viewing volume (aka view frustum)
- Need an easy test for this...

- Z-Axis: between 2 clipping planes
 \(z_{\text{near}} > z_{\text{view}} > z_{\text{far}} \) (remember: negative z)

- X- and Y-Axis: inside the viewing cone
 - \(-w_{\text{view}} < x_{\text{view}} < w_{\text{view}}\)
 - \(-w_{\text{view}} < y_{\text{view}} < w_{\text{view}}\)

- Two simple comparisons for each axis!
Octrees speed up View Frustum Culling

• Naive frustum culling needs $O(n)$ tests
 – where $n =$ number of objects

• Divide entire space into 8 cubes
 – see which objects are inside each

• subdivide each cube again
 – do recursively until cube contains less than k objects

• Instead of culling objects, cull cubes

• Needs $O(\log n)$ tests
Back-face culling

- Idea: polygons on the back side of objects don’t need to be drawn
- Polygons on the back side of objects face backwards
- Use the Polygon normal to check for orientation
 - if angle < 90° between optical axis and normal then polygon is facing backwards
 - if angle < 90° => cos(angle) > 0 => scalar product > 1 for vectors of length 1
Occlusion culling
• Idea: objects that are hidden behind others don’t need to be drawn
• efficient algorithm using an occlusion buffer, similar to a Z-buffer
Chapter 3 - The 3D camera and associated problems

• 3D camera model
• Optimizations for the camera

• How to deal with Occlusion
• Rasterization
 – clipping
 – drawing lines
 – filling areas
Occlusion: The problem space in general

- Need to determine which objects occlude which others
- Want to draw only the frontmost (parts of) objects

- Culling worked at the object level, now look at the polygons

- More general: draw the frontmost polygons
 - Or maybe parts of polygons?

- Occlusion is an important depth cue for humans
 - Need to get this really correct!
Occlusion: depth-sort

• Regularly used in 2D vector graphics

• Sort polygons according to their z position in view coordinates
• Draw all polygons from back to front
• Back polygons will be overdrawn
• Front polygons will remain visible

• Problem 1: self-occlusion
 – not a problem with triangles ;-)

• Problem 2: circular occlusion
 – think of a pin wheel!
Occlusion: Z-Buffer

• Idea: compute depth not per polygon, but per pixel!
• Approach: for each pixel of the rendered image (frame buffer) keep also a depth value (Z-buffer)
• Initialize the Z-buffer with x_{far} which is the furthest distance we need to care about
• loop over all polygons
 – Determine which pixels are filled by the polygon
 – for each pixel
 • compute the z value (depth) at that position
 • if $z >$ value stored in Z-buffer (remember: negative Z!)
 – draw the pixel in the image
 – set Z-buffer value to z

Z-Buffer example
Z-Buffer: tips and tricks

• Z-Buffer normally built into graphics hardware
• limited precision (e.g., 16 bit)
 – potential problems with large models
 – set clipping planes wisely!
 – never have 2 polygons in the exact same place
 – otherwise typical errors (striped objects)

• Z-Buffer can be initialized partially to something else than x_{far}
 – at pixels initialized to x_{near} no polygons will be drawn
 – use to cut out holes in objects
 – then rerender objects you want to see through these holes
Chapter 3 - The 3D camera and associated problems

• 3D camera model
• Optimizations for the camera
• How to deal with Occlusion

• Rasterization
 – clipping
 – drawing lines
 – filling areas
Rasterization: the problems

• Clipping: Before we draw a polygon, we need to make sure it is completely inside the image
 – if it already is: OK
 – if it is completely outside: even better ;-)
 – if it intersects the image border: need to do clipping!

• Drawing lines: How do we convert all those polygon edges into lines of pixels?

• Filling areas: How do we determine which screen pixels belong to the area of a polygon?

• Part of this will be needed again towards the end of the semester in the shading/rendering chapter
Clipping (Cohen & Sutherland)

- Clip lines against a rectangle
 - For end points P and Q of a line
 - determine a 4 bit code each
 - 10xx = point is above rectangle
 - 01xx = point is below rectangle
 - xx01 = point is left of rectangle
 - xx10 = point is right of rectangle
 - easy to do with simple comparisons

- Now do a simple distinction of cases:
 - P OR Q = 0000: line is completely inside: draw as is (Example A)
 - P AND Q != 0000: line lies completely on one side of rectangle: skip (Example B)
 - P != 0000: intersect line with all reachable rectangle borders (Ex. C+D+E)
 - if intersection point exists, split line accordingly
 - Q != 0000: intersect line with all reachable rectangle borders (Ex. C+D+E)
 - if intersection point exists, split line accordingly
Drawing a line: naive approach

- Line from \((x_1, y_1)\) to \((x_2, y_2)\), Set \(dx := x_2 - x_1\), \(dy := y_2 - y_1\), \(m := dy/dx\)
- Assume \(x_2 > x_1\), otherwise switch endpoints
- Assume \(-1 < m < 1\), otherwise exchange \(x\) and \(y\)

For \(x\) from 0 to \(dx\) do:

 setpixel \((x_1 + x, y_1 + m \times x)\)

od;

- In each step:
 - 1 float multiplication
 - 1 round to integer
Drawing a line: Bresenham‘s Algorithm

• Idea: go in incremental steps
• Accumulate error to ideal line
 – go one pixel up if error beyond a limit
• Uses only integer arithmetic
• In each step:
 – 2 comparisons
 – 3 or 4 additions

dx := x_2 - x_1; dy := y_2 - y_1
d := 2*dy – dx; DO := 2*dy;
dNO := 2*(dy - dx)
x := x_1; y := y_1
setpixel (x,y)
fehler := d

WHILE x < x_2
 x := x + 1
 IF fehler <= 0 THEN
 fehler := fehler + DO
 ELSE
 y := y + 1
 fehler = fehler + dNO
 END IF
 setpixel (x,y)
END WHILE

Antialiased lines

- Problem: Bresenham’s lines contain visible steps (aliasing effects)
- Opportunity: we can often display greyscale
- Idea: use different shades of grey as different visual weights
 - instead of filling half a pixel with black, fill entire pixel with 50% grey

- Different algorithms exist
 - Gupta-Sproull for 1 pixel wide lines
 - Wu for infinitely thin lines
Wu‘s antialiasing approach

• Loop over all x values
• Determine 2 pixels closest to ideal line
 – slightly above and below
• Depending on distance, choose grey values
 – one is perfectly on line: 100% and 0%
 – equal distance: 50% and 50%
• Set these 2 pixels
Antialiasing in General

• Problem: hard edges in computer graphics
• Correspond to infinitely high spatial frequency
• Violate sampling theorem (Nyquist, Shannon)
 – reread 1st lecture „Digitale Medien“

• Most general technique: Supersampling
• Idea:
 – render an image at a higher resolution
 • this way, effectively sample at a higher resolution
 – scale it down to intended size
 – interpolate pixel values
 • this way, effectively use a low pass filter
Line drawing: summary

- With culling and clipping, we made sure all lines are inside the image
- With algorithms so far we can draw lines in the image
 - even antialiased lines directly
- This means we can draw arbitrary polygons now (in black and white)

- All algorithms extend to color
 - just modify the setpixel \((x,y)\) implementation
 - choice of color not always obvious (think through!)
 - how about transparency?

- All these algorithms implemented in hardware
- Other algorithms exist for curved lines
 - mostly relevant for 2D graphics
Filling a Polygon: Scan line algorithm

• Define parity of a point in 2D:
 – send a ray from this point to infinity
 – direction irrelevant (!)
 – count number of lines it crosses
 – if 0 or even: even parity (outside)
 – if odd: odd parity (inside)

• Determine polygon area \((x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}})\)
• Scan the polygon area line by line
• Within each line, scan pixels from left to right
 – start with parity = 0 (even)
 – switch parity each time we cross a line
 – set all pixels with odd parity
Rasterization summary

• Now we can draw lines and fill polygons
• All algorithms also generalize to color
• How do we determine the shade of color?
 – this is called shading and will be discussed in the rendering section