Computer Graphics 1

Chapter 4 (June 9th, 2011, 2-4pm):
The scene graph
The 3D rendering pipeline (our version for this class)

3D models in model coordinates → 3D models in world coordinates → 2D Polygons in camera coordinates → Pixels in image coordinates

Scene graph → Camera

Animation, Interaction → Rasterization

Lights
Chapter 4 - The scene graph

• Why a scene graph?

• What is stored in the scene graph?
 – objects
 – appearance
 – camera
 – lights

• Rendering with a scene graph

• Practical example
Why a scene graph?

• Naive approach: for each object in the scene, set its transformation by a single matrix (i.e., a tree 1 level deep and N nodes wide)
 – advantage: very fast for rendering
 – disadvantage: if several objects move, all of their transforms change

• Observation: Things in the world are made from parts

• Approach: define an object hierarchy along the part-of relation
 – transform all parts only relative to the whole group
 – transform group as a whole with another transform
 – parts can be groups again

http://www.bosy-online.de/Veritherm/Explosionszeichnung.jpg
Chapter 4 - The scene graph

• Why a scene graph?

• What is stored in the scene graph?
 – objects
 – appearance
 – camera
 – lights

• Rendering with a scene graph

• Practical example
Geometry in the scene graph

- Leafs are basic 3D objects
- Non-leaf nodes (groups) contain a transformation
 - can have one or several children
 - transformation is given by a homogeneous Matrix
- Root is the entire world

- Nodes can be the child of several groups
 - not a tree, but a directed acyclic graph (DAG)
 - effective reuse of geometry
Appearance in the scene graph

- Scene graph also contains appearances
 - can be reused similarly to geometry

- Appearance can be only partially specified
 - unspecified values are inherited
Lights in the scene graph

• Light sources also need a position and/or direction
 – Just include them into the scene graph
 – Can be animated just like geometry

• Lights can be in local coordinate systems of geometry groups
 – move with them
 – example: lights on a car
The camera in the scene graph

- Camera also needs a position and direction
 - Just include it into the scene graph
 - Can be animated just like geometry

- Camera can be in local coordinate systems of geometry groups
 - move with them
 - example: driver’s view from a car
Chapter 4 - The scene graph

• Why a scene graph?
• What is stored in the scene graph?
 – objects
 – appearance
 – camera
 – lights

• Rendering with a scene graph

• Practical example
Scene graph traversal for rendering

- set T_{act} to T_{Auto}
- save state
- set T_{act} to $T_{act} \times T_{Karosserie}$
- save state
- set T_{act} to $T_{act} \times T_{Chassis}$
- render Quader1
- restore state
- set T_{act} to $T_{act} \times T_{Kabine}$
- render Quader2
- restore state
- restore state
- set T_{act} to $T_{act} \times T_{Räder}$
- ...
Chapter 4 - The scene graph

• Why a scene graph?
• What is stored in the scene graph?
 – objects
 – appearance
 – camera
 – lights
• Rendering with a scene graph
 • Practical example
Example of a scene graph

- Graph to be drawn together in the lecture
- VRML world linked from the class page
Scene graph libraries

- **VRML/X3D**
 - as seen in the examples
 - nice, because text format

- **OpenInventor**
 - based on C++ and OpenGL
 - used to be a commercial library
 - originally Silicon Graphics, 1988
 - now supported by VSG3d.com

- **Java3D**
 - Uses OpenGL for rendering
 - provides 3D data structures in Java
 - not supported anymore