Computer Graphics 1

Chapter 10 (July 21st, 2011, 2-4pm):
3D input and output devices
Ein paar Dinge vorab:

• 21.7. letzter Termin mit prüfungsrelevantem Stoff
 – 28.7. Fragestunde zum Vorlesungsstoff, kein neuer Stoff mehr
 – Klausur am 3.8.2011 von 18:00 - 20:00 im Hörsaal B 201
 – Montag 18.7. Übungsblatt mit Klausur-ähnlichen Fragen
 – in den Übungen der Woche danach: Besprechung der Lösungen

• Evaluation der Vorlesung
 – LMU-Evaluation: nach der Klausur
 – meinprof.de (optional!)
The 3D rendering pipeline (our version for this class)

3D models in model coordinates → 3D models in world coordinates → 2D Polygons in camera coordinates → Pixels in image coordinates

Scene graph → Camera → Rasterization

Animation, Interaction → Lights
Chapter 10 - 3D input and output devices

- Depth perception in human vision
- 3D output devices
 - anaglyphic stereo
 - shutter and polarizing glasses
 - autostereoscopic displays
 - volumetric displays
 - CAVE
 - head tracked stereo
 - HMDs
- 3D input devices
 - mice
 - gloves
 - tracking
Depth Perception in Human Vision

• The visual system derives spatial information from a number of cues:

• Monocular cues:
 – Occlusion: which objects cover up which other?
 – Size: the relative or familiar size of objects shows how far they are.
 – Perspective: assumptions about space and perspective communicate depth
 – Texture gradient: imagine a cobblestone pavement on the road before you...
 – Accommodation: the distance at which the eye lenses are focused
 – Motion parallax: moving the head left and right provides stereo-like depth perception with one eye only

• Binocular cues:
 – Stereopsis: different images seen by left and right eye
 – Convergence: the distance at which objects are in the same position for both eyes
Chapter 10 - 3D input and output devices

• Depth perception in human vision

• 3D output devices
 – anaglyphic stereo
 – shutter and polarizing glasses
 – autostereoscopic displays
 – volumetric displays
 – CAVE
 – head tracked stereo
 – HMDs

• 3D input devices
 – mice
 – gloves
 – tracking
Anaglyphic stereo on conventional screens

• Overlays 2 images in different primary or complementary colors
 – mostly: left image in red, right image in cyan

• When rendering:
 – set convergence on main object
 – Set focus on main object (anyway ;-)

• When viewing:
 – convergence is on main object
 – accommodation is on screen
 – ideal: convergence in screen plane (i.e. focus = conv.)

• Cheapest way of achieving stereo vision
 – color stereo glasses for a few cents

• Unwanted effects on color
 – red/cyan: all colors there, but in different eyes...

http://www.syndime.com/pics/Hulk.jpg
LCD Shutter Glasses

- Liquid crystals change polarization direction with electric current
- LCD element can be switched between transparent and opaque

- Each eye is covered by an LCD element
- Eyes are blinded alternatingly
 - left image is shown when right eye is blinded
 - right image is shown when left eye is blinded
 - light loss >= 50%
- Glasses need to be synchronized with screen
 - via cable or infrared

- Image frequency needs to be twice as high
 - can be a problem with projectors
Polarized Projection

- Project left and right image with different polarization
 - used to need 2 projectors for that
 - now available in 1 device for $6K
 - preserves full color

- Special projection screen needed to preserve polarization

- Cover eyes with orthogonal polarizers
- Polarizer glasses absorb light (>50%)
- Full color is preserved
- Focus + convergence on the projection plane
Autostereoscopic displays

- Provide different images to both eyes depending on their position
- Very sensitive to head motion
 - what about motion parallax?
- Different optical constructions exist
 - parallax barrier
 - lenslets, prisms
- accommodation on screen
- convergence on main object
- Principle was known since the 80s
- Still no wide adoption
Excursion: 3D-TV

- No clear technology favourite for 3D TV yet, different systems in use:
 - Stereoscopy with shutter glasses (see there), works everywhere
 - Stereoscopy with polarizer glasses (see there), no batteries needed
 - Autostereoscopic screens (see there): works only in a sweet spot.

- Interesting technology proposed by SHARP:
 - Switchable parallax barrier
 - Can be used for 3D
 - Can display 2D without loss

- Very active development

http://www.thinkdigit.com/TVs/How-3D-TV-works-Part-II-3602.html
Volumetric Displays

• Active field of research
• Several approaches exist
• Video: siggraph 2007 exhibit
• Discussion: How does this work?

http://gl.ict.usc.edu/Research/3DDisplay/
CAVE

- CAVE Automatic Virtual Environment
- User is surrounded by back projection
- Minimum 3, maximum 6 sides
- Stereo projection for space impression
- Head tracking for correct perspective
- User can walk around (well, a bit ;-)

- Usually quite a big architectural effort
- LRZ is currently planning to build one
Head-tracked 3D and motion parallax

- Stereo rendering assumes a known head position
- Motion parallax needs head movements to work
- „Fishtank VR“ really needs head tracking to work properly
- If the display is moved, additional tracking is needed.

http://hct.ece.ubc.ca/research/pcubee/
Head-Mounted Displays

• Concept first presented by Ivan Sutherland 1965
• Large developments, but still no wide adoption

• Idea: have a small screen with optics for each eye
 • stereopsis works well
 • accommodation is usually fixed to a few meters
 • convergence depends on rendering

• HMDs need fast tracking of the head
 – Discussion: why???
Chapter 10 - 3D input and output devices

• Depth perception in human vision

• 3D output devices
 – anaglyphic stereo
 – shutter and polarizing glasses
 – autostereoscopic displays
 – volumetric displays
 – CAVE
 – head tracked stereo
 – HMDs

• 3D input devices
 – mice
 – gloves
 – tracking
2D mouse ;-)

- No real 3D interaction device, but still the one most often used for 3D interaction!
- Dimensionality is the same as 2D screen
 - similar problems result
- Substitute 3rd dimension by various means
 - input modes, e.g. by pressing buttons
 - interaction techniques (see last lecture)

http://en.wikipedia.org/wiki/Mouse_(computing)
Space mouse

• Provides true 6 DOF input
 – 3x translate, 3x rotate

• Not an absolute and direct mapping as with 2D mouse
 – rather joystick-like mapping

• Various designs and manufacturers exist

http://www.3dconnexion.com/
Data Gloves

• Track the angles of the fingers
 – at various levels of exactness
• Some are also tracked in space (3-6 DOF)
• Models with force feedback exist
• Usually used with a virtual hand in the 3D scene

http://www.vrealities.com/glove.html
Tracking

- Acoustic: 3D position
- Magnetic: 3D position + orientation (6 DOF)
- Inertial: 3D orientation and relative position

- other technologies and combined systems exist
 - beyond the scope of this class
 - see AR and IE classes
Acoustical Tracking: Working Principle

- The tracking target is a known sound source emitting e.g. ultrasonic pulses
- 3 or more Microphones determine the time it takes for the signal to arrive. This is directly proportional to the distance (speed of sound = 330m/s)
- Time t to a microphone means the source is on a sphere with radius $t/330$
- 2 spheres define a circle, 3 spheres define 2 points
- 1 point can often be excluded logically
- Hence 3 mics can determine the 3D position of a sound source

[Bishop et al. 2001]
Magnetic Tracking: Working Principle

• Big stationary Coils create a known magnetic field in space
• This magnetic field induces a current in small coils, depending on their orientation and distance
• Three small coils can identify 3D position and orientation (=6 DOF)
• Two main principles:
 – low frequency AC, all metallic objects around influence the field
 – pulsating DC, only influenced by ferromagnetic objects
• Magnetic tracking is hard to calibrate and influences other devices
Inertial Tracking: Acceleration sensors

- Built from piezo elements and weights
- Integrated circuit
Inertial Tracking: Gyroscopes

\[L = I \omega \]

angular momentum

The rapidly spinning inner wheel will maintain its direction in space if the outside framework changes.

see also http://www.mikrokopter.de/ucwiki/GyroScope
Lecture Summary

1. 5.5. Intro, LinAlg
2. 12.5. -
3. 19.5. 3D Modelling
4. 26.5. Camera, culling, Z-Buffer
5. 2.6. -
6. 9.6. Scene graphs
7. 16.6. Light, Phong Model, Shadows
8. 23.6. -
9. 30.6. Surfaces, Materials, Maps
10. 7.7. Shading, Rendering
11. 14.7. Animation
12. 21.7. Interaction
13. 28.7. Devices
The 3D rendering pipeline (our version for this class)

1. 3D models in model coordinates
2. 3D models in world coordinates
3. 2D Polygons in camera coordinates
4. Pixels in image coordinates

- Scene graph
- Camera
- Animation, Interaction
- Rasterization
- Lights