Praktikum Entwicklung von Mediensystemen mit iOS

SS 2011

Michael Rohs michael.rohs@ifi.lmu.de MHCI Lab, LMU München

Timeline

Date	Topic/Activity		
5.5.2011	Introduction and Overview of the iOS Platform		
12.5.2011	Implementing a User Interface		
19.5.2011	App Architecture, Touch Input, Saving Data		
26.5.2011	Location, Sensors; Brainstorming		
2.6.2011	no class (Christi Himmelfahrt)		
9.6.2011	Networking, Camera API; Milestones		
16.6.2011			
23.6.2011	no class (Fronleichnam)		
30.6.2011			
07.07.2011			
14.07.2011			
21.07.2011	Project Presentation		
28.07.2011	Evaluation		
	Paper Writing		

Today

- Location
- Sensors
- Exercise 3
- Brainstorming

Location

- Location manager provides location information CLLocationManager *locationManager;
- Configuration

```
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
locationManager.desiredAccuracy = [[setupInfo
objectForKey:@"SetupInfoKeyAccuracy"] doubleValue];
[locationManager startUpdatingLocation];
```

Update location

```
(void)locationManager:(CLLocationManager *)manager
didUpdateToLocation:(CLLocation *)newLocation fromLocation:
(CLLocation *)oldLocation { ... }
```

Details: LocateMe example application

Latitude and Longitude

- Location manager state manager.locationServicesEnabled
- Location manager desiredAccuracy constants
 - kCLLocationAccuracyBestForNavigation
 - kCLLocationAccuracyBest
 - kCLLocationAccuracyNearestTenMeters
 - kCLLocationAccuracyHundredMeters
 - kCLLocationAccuracyKilometer
 - kCLLocationAccuracyThreeKilometers
- CLLocation
- CLLocationDegrees
- CLLocationDistance (from location ... to location)

Accelerometer (since iOS 2.0)

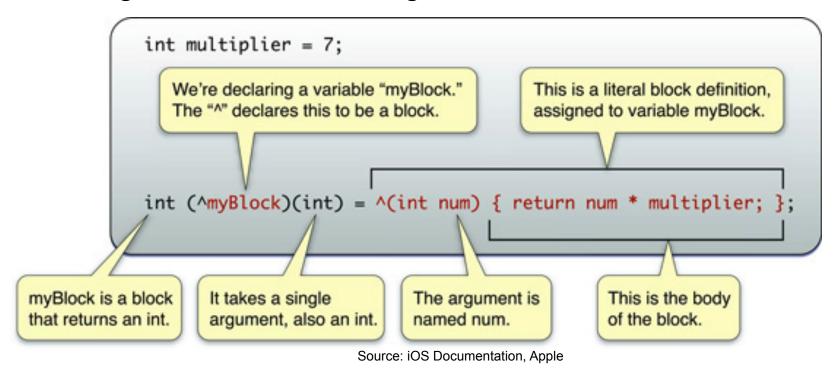
UIAccelerometer

UIAccelerometer *acc;

Configure accelerometer

```
acc = [UIAccelerometer sharedAccelerometer];
acc.updateInterval = 1.0; // sec
acc.delegate = self;
```

Source: iOS Documentation, Apple


Receive updates

Motion Sensors (since iOS 4.0)

- Core Motion Framework
- CMMotionManager provides access to
 - raw accelerometer data (accelerometer)
 - raw rotation-rate data (gyroscope)
 - processed device-motion data (fused sensor data)
- Receiving sensor data
 - Specific intervals
 - accelerometerUpdateInterval
 - startAccelerometerUpdatesToQueue:withHandler:
 - On demand
 - startAccelerometerUpdates
 - accelerometerData

Code Blocks

- Blocks: conceptually similar to function pointers in C
 - Can access variables from function in which they are defined
- Passing a code block as argument

Calling: [someObject someFunction:myBlock];

Getting Accelerometer Values

Create and configure motion manager
 motionManager = [[CMMotionManager alloc] init];
 motionManager.accelerometerUpdateInterval = 1.0; // sec

Register handler and start updates

```
void (^accHandler)(CMAccelerometerData*, NSError*) =
     ^(CMAccelerometerData *accData, NSError *error)
{
     NSLog(@"%f, %f, %f", accData.acceleration.x,
     accData.acceleration.y, accData.acceleration.z);
};
[motionManager startAccelerometerUpdatesToQueue:
     [NSOperationQueue mainQueue] withHandler:accHandler];
```

Stop updates

should not use main queue

[motionManager stopAccelerometerUpdates];

Getting Accelerometer Values

- Create new queue
 queue = [[NSOperationQueue alloc] init];
- Register handler and start updates

```
void (^accHandler)(CMAccelerometerData*, NSError*) =
     ^(CMAccelerometerData *accData, NSError *error)
{
     NSLog(@"%f, %f, %f", accData.acceleration.x,
     accData.acceleration.y, accData.acceleration.z);
};
[motionManager startAccelerometerUpdatesToQueue:queue
     withHandler:accHandler];
```

Need to use main queue to update UI

Update UI on Main Queue

```
void (^accHandler)(CMAccelerometerData*, NSError*) =
^(CMAccelerometerData *accData, NSError *error)
  dispatch async(dispatch get main queue(), ^{
    NSString *s;
    s = [NSString stringWithFormat:@"%.3f", accData.acceleration.x];
    labelX.text = s;
    s = [NSString stringWithFormat:@"%.3f", accData.acceleration.y];
    labelY.text = s;
    s = [NSString stringWithFormat:@"%.3f", accData.acceleration.z];
    labelZ.text = s:
  });
```

Operation Queues

- NSOperationQueue objects store and execute NSOperation objects
- Operation queues
 - Store and execute operation objects
 - Provide their own threads to execute operations
 - Encapsulate threads
- Operations
 - Abstract base classes for tasks to perform
 - Have priorities
 - One operation may depend on completion of other operations

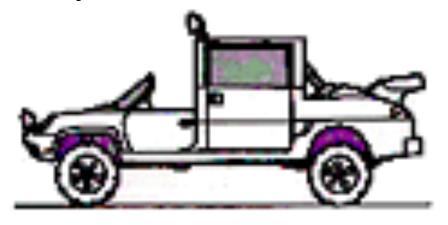
Exercise 3

Project Ideas

- Strengths of mobile devices?
- Usage situations?
- Target users?
- Application domains?
- Technological possibilities on the device (sensors...)?
- Combination with external hardware (Arduino...)?

Brainwriting

- Repeat 5 times
 - 3 minutes: On paper, fill one row with 3 ideas
 - Pass on paper clockwise
 - Read other ideas, fill next line with 3 more ideas
- Select the 3 best ideas
 - 10 minutes
 - Present selected ideas


User Profiles or "Personas" (Cooper, 1998)

- Short profiles of typical users
 - Prototypical user for a specific user group
 - Fictitious individual with concrete characteristics
- Building personas
 - Often built from interview results
 - Synthesize fictitious users from real user characteristics
 - Develop multiple personas for different types of users
- Bring them to life
 - With a name, characteristics, experience, personal background, environment they are located in, goals, tasks, skill levels, etc.
- Base design decisions on the needs of the personas

Personas Example

(Cooper, About Face, Chapter 5)

Building a car that pleases everyone

Building a car based on three personas (representing larger groups)

Marge, *mother of three*Marge wants safety and room for many passengers. A minivan meets her needs.

Jim, construction worker
Jim wants cargo space and the ability to
carry heavy load. A pickup truck meets
his needs.

Alesandro, software engineer
Alesandro wants sporty looks and speed.
A two-door sports car meets his needs.

Personas Help to...

- Communicate user characteristics to developers
 - Consistent, coherent understanding of target group
 - Features prioritized by how well they match personas' needs
 - Evoke empathy for the target users represented by personas
- Avoid elastic users
 - Constantly changing target user to justify differing design choices
 - Clear focus towards the intended users
- Avoid self referential design
 - Developers / designers designing for themselves
- Avoid designing for "edge cases"
 - Should not be central to design (prioritize!)

Example Persona: Bob

Bob is 52 years old and works as a mechanic with an organisation offering road service to customers when their car breaks down. He has worked in the job for the past 12 years and knows it well. Many of the younger mechanics ask Bob for advice when they meet up in the depot as he always knows the answer to tricky mechanical problems. Bob likes sharing his knowledge with the younger guys, as it makes him feel a valued part of the team.

Bob works rolling day and night shifts and spends his shifts attending breakdowns and lockouts (when customers lock their keys in the car). About 20% of the jobs he attends are complex and he occasionally needs to refer to his standard issue manuals. Bob tries to avoid using the manuals in front of customers as he thinks it gives the impression he doesn't know what he's doing.

Bob has seen many changes over the years with the company and has tried his best to move with the times. However he found it a bit daunting when a new computer was installed in his van several years ago, and now he has heard rumors that the computer is going to be updated to one with a bigger screen that's meant to be faster and better.

Bob's been told that he will be able to access the intranet on the new computer. He has heard about the intranet and saw once in an early version on his manager's computer. He wonders if he will be able to find out want's going on in the company more easily, especially as customers' seem to know more about the latest company news than he does when he turns up at a job. This can be embarrassing and has been a source of frustration for Bob throughout his time with the company.

Bob wonders if he will be able to cope with the new computer system. He doesn't mind asking his grandchildren for help when he wants to send an email to his brother overseas, but asking the guys at work for help is another story.

Source: http://www.steptwo.com.au/papers/kmc_personas/

Sensor Coordinate Systems

"Orientation Sensor" = Accelerometer + Magnetometer

Axis	Zero position	Range	Details
Yaw	north	-п п	0=north, -π/2=east, ±π=south, π/2=west
Pitch	horizontal	-π/2 π/2	0=horizontal, >0: up, <0: down
Roll	horizontal	-п п	0=horizontal, >0: right, <0: left