Chapter 8 - Animation

• Animation before the time of 3DCG
• Animation techniques
 – keyframing
 – bone animation & motion capture
 – simulation
• Animation principles
The 3D rendering pipeline (our version for this class)
Chapter 8 - Animation

• Animation before the time of 3DCG

• Animation techniques
 – keyframing
 – bone animation & motion capture
 – simulation

• Animation principles
Animation == bring to life

• Generally any kind of **moving** graphics
 – flipbooks
 – cartoon films
 – computer animation

• Sequence of single images
 – Movie: 24, TV: 30, Comp.: up to >100/sec.

• Impression of movement >6 fps (???)

• 3D animation most often at video frame rates
Creating a Classic Cartoon Animation

- Idea > treatment > story board, sound
- Draw keyframes (expensive)
 - important or tricky phases of motion
- Interpolate between keyframes (cheap)
 - easy and straightforward phases
- Color and film the single frames

http://webshiva.com/Spring_2005_History_Animation/lectures/images/us_2s.jpg
Creating 3D Computer Animation

• Idea > treatment > story board
• Describe keyframes explicitly
 – complete description of the 3D world state
• Interpolate between keyframes
 – calculate state of the world for each frame
• Render and display/store single frames

Chapter 8 - Animation

• Animation before the time of 3DCG

• Animation techniques
 – keyframing
 – bone animation & motion capture
 – simulation

• Animation principles
Keyframing

- Define certain parameters of the scene for certain frames
 - not all in every keyframe
 - also known from other authoring systems (e.g. Flash, MS Expression Blend)
 - also applied in purely textual programming and scripting languages (e.g. XAML, JavaFX)

Keyframing the Position
Linear Interpolation

\[x = x_0 + \frac{t - t_0}{t_1 - t_0} (x_1 - x_0), \quad y = y_0 + \frac{t - t_0}{t_1 - t_0} (y_1 - y_0) \]
Spline Interpolation (Non-Linearity in Space/Value)

- still only define key frames as control points of the spline
- interpolate in a smooth curve
- risk of overshooting when controlling the splines
Non-Linearity in Time

• In reality, physics does not allow properties of objects to change in an instant
 – Example: Object taking up speed
• “Ease in” and “ease out”
 – Starting and ending phase of movement
 – Smooth transition
 – Example: Speed changes from zero to given velocity

• Other non-linear behavior over time:
 – E.g. constant acceleration greater than 0 (or varying acceleration)

Ease in parameter in Flash motion tweens
Keyframing the Orientation

- Choose rotation axis
- Interpolate angle about this axis
- Or: shortest path on the unit sphere
Keyframing the Size
Keyframing Mesh Deformation

• Grab a control point
• Keyframe its position
• Deform the polygon mesh accordingly
Keyframing the Color

- Can be done in RGB or HSV color space
Keyframing the Virtual Camera

- Position
- Orientation
- Field of view
- Depth of field
Keyframing the Light Setup

- directional light
- positional light
- ambient light
- spotlight
- area light

- position
- direction
- beam angle
Other Things to Keyframe

- levels of detail
- visibility
- transparency, shininess
- texture / bump maps
- shading parameters
- rendering method
Chapter 8 - Animation

• Animation before the time of 3DCG
• Animation techniques
 – keyframing
 – bone animation & motion capture
 – simulation
• Animation principles
Bone animation

- Also: skeletal animation

- Define a skeleton for a polygon mesh
 - topology/structure of the model

- Move only the bones of this skeleton
 - by keyframing joint angles
 - by motion capture data
 - by inverse kinematics

- Polygon mesh follows and deforms
 - connection between bone and mesh is not rigid
 - mesh stays closed and smooth
Motion Capture

• Tracking position and/or orientation of
 – limbs of an actor
 – feature points of a face
 – optical markers on a suit

• Define a relation between tracked feature points and 3D scene points

• Move the mesh exactly along the tracked data

• Still gives the most realistic results
Real-Time Rendering and Motion Capturing

• “Avatar” (2009, James Cameron)
 – Large motion-capture stage
 – “full performance capture”
 – Skull caps for actors with facial expression capture cameras

• “Virtual Camera” Augmented Reality technology)
 – Shows virtual counterparts of actors in real-time

• Huge amount of data assets
• Rendering machine:
 4,000 servers with 35,000 processors

Chapter 8 - Animation

• Animation before the time of 3DCG
• Animation techniques
 – keyframing
 – bone animation & motion capture
 – simulation
• Animation principles
Physics simulation

- Physics engine is often an integral part of 3D games
 - calculations can be done efficiently on GPUs, for example
 - can handle large numbers of objects

- Not all aspects of physics need to be simulated

- Two examples
 - Inverse kinematics
 - Particle systems

\[
\text{mass } m, \quad \text{gravitation } g, \\
fall: \quad v = g \times t, \quad y = y_0 - \frac{1}{2} g \times t^2 \\
jump: \quad v_2 = -c \times v_1
\]
Inverse Kinematics

• Kinematics describes, how an object moves
• **Forward** kinematics: how does the object move, given the joint angles
• **Inverse** kinematics: what are the joint angles, given the object motion

• Mainly a way to save work in keyframing
Particle Systems

• Used for various phenomena
 – dust, explosions
 – fire
 – grass, hair, fur

• Generates a large number of objects
• Moves them with simple physics
• Handle collisions etc..

• No detailed influence on single objects
• Parameters of creation and motion can be controlled

http://www.cgtutorials.com/oneadmin/ files/linksdir/1685 Create fire effects with particle system.jpg
AI Example: Flocks, Herds, Schools

• A classic example of a simulation of a natural phenomenon (1987)

• Each bird/fish has 3 simple control principles

 – Separation: steer to avoid crowding local flockmates
 – Alignment: steer towards the average heading of local flockmates
 – Cohesion: steer to move toward the average position of local flockmates
Stanley & Stella in Breaking the Ice (1987)
Chapter 8 - Animation

• Animation before the time of 3DCG
• Animation techniques
 – keyframing
 – bone animation & motion capture
 – simulation

• Animation principles
Animation Principles

• Known by cell animators for a long time
• Will make your animations look appealing
• Often have to do with exaggeration
 – support our perception of a character/motion

• Examples here from tutorials at
 • http://www.comet-cartoons.com/toons/3ddocs/charanim/
 • http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/prin_trad_anim.htm
 • http://billysalisbury.com/tutorials_principles.htm
Timing

• The exact same motion can express entirely different things at different speeds
• Generally: slow timing conveys calm, fast timing conveys hectic
• "The difference between the right timing and the almost right timing, is the difference between lightning and a lightning bug."
Ease In and Out (or Slow In and Out)

- All motions in nature start slowly and accelerate
- Due to physics (inertia of mass)
- Heavy objects generally accelerate slower
- Light objects accelerate faster
- Can be combined with object deformations
Arcs

- Many motions in nature happen in arcs.
- Linear motions only in machines
- Motion in arcs look more natural on characters
Anticipation

- Motions in nature never start abruptly.
- There is always a phase before the actual motion, when the character already knows he wants to move.
- Is used with much exaggeration in cartoons
Exaggeration

- Motions come across more pointedly when exaggerated
- Light exagg. = only emphasizing the motion
- Strong exagg. = cartoon-like appearance
Squash and Stretch

• Soft objects are squashed when they hit an obstacle and stretch when released.
• All objects are soft to *some* extent
• Again: exaggeration creates a cartoon-like appearance
Secondary Action

• Secondary story/character/movement in the background
• Should not outpower main action
• Creates a counterpoint to the main action
• Can be used for running gags, Eastereggs
• Can create ironic side notes
• Can emphasize atmosphere
• Example:
 – fingers on the table
 – Figure in the background

![Image of a cartoon character, likely a squirrel, holding a nut.](http://www.canalred.info/public/Fondos_Pantalla/Cine_y_Tv/Scrat - Ice Age.jpg)
Follow Through and Overlapping Action

• Same as anticipation, but at the end of an action
• Object goes past its resting point and then comes back to where it would normally be.
• Again: exaggeration creates a cartoon-like appearance
Straight Ahead and Pose-To-Pose Action

- Define pose frame by frame from start to end
- Not sure where it will end until done
- Useful for fine tuning motions

- Define start pose and end pose
- Interpolate poses inbetween
- Leads to well defined key frames
- Useful for tweaking the timing
Staging

• Make action and objects understandable
• Show actions one at a time
• position objects to maximize silhouette
• Combine effects to convey a consistent message
Non-Symmetrical Posing and Performing

- Asymmetrical compositions are more interesting
- Nature is almost never *perfectly* symmetric
- Image diagonal can convey atmosphere
Snap

- Quick and abrupt motions
- Only a few frames long
- Convey something that happens abruptly
- Can be emphasized by sound
Weight

- Imitate physical behavior to convey the weight of objects
- Heavy objects accelerate slowly
- Light objects bounce higher
- Heavy objects push light ones aside
Line Crossing Error

• Camera must not cross the line of motion
• Otherwise will be perceived as 2 different motions
• Fix: cut a different scene in between

• not particular to 3D animation!
Appeal, Personality

• Appeal is anything the audience likes to see
• Can be quality of charm, design, simplicity, movements, communication
• Create believable personalities
 – Consistency in pose, facial expression, communication, behavior

• Image from „ferdinand the bull“
• Disney, 1938..

http://www.ultimatedisney.com/images/w-z/wdac-v6-03.jpg
Pixar: For the Birds (2008)