
PEM (Android) SS 2014 Assignment 01

 1

Assignment 01

First Steps
Prepare the Android development environment and create your first test app to
check all involved components

Download the Android development IDE of your choice
Android currently offers two convenient ways to develop Apps for Android. Choose
the IDE of your choice and set it up correctly, the ADT might be more suitable if you
are already familiar with eclipse.

1) Android Development Tools (ADT) for Eclipse
http://developer.android.com/sdk/index.html

2) Android Studio
http://developer.android.com/sdk/installing/studio.html

Both environments come pre-bundled with the latest Android SDK and Emulator.

Create first app and run it on your device or in the emulator
Create a first sample App using the default values and get familiar with the structure
of the IDE. Identify the IDE modules that let you inspect logs generated on the
device (LogCat).
For running the App in the emulator, first create a new emulator configuration.
Afterwards start the emulator and run the App in it.
If you have your own Android device, try running the App on it. You will probably
have to install a driver on Windows machines; Linux and Mac should display your
device as a startup target directly. It might also be necessary to bring your device
into developer mode.

Note: Have a look at the Android tools reference for more information
(http://developer.android.com/tools/workflow/index.html).

PEM (Android) SS 2014 Assignment 01

 2

Pirate Slang Conversion App
As your first assignment, you will build an App that translates a given text into pirate
slang and displays the result to the user. It makes use of standard design elements
(ActionBar, NavigationDrawer) and uses a web service for the translation of the text.

Modify the main layout
The default activity layout should consist of two text elements (one for inserting the
text to translate, the other for displaying the translation) and two buttons (one for
clearing both text fields, one for submitting a new translation request). Together, all
elements should take up the available content area.

Afterwards, wire all elements up to the activity in order to change the text
programmatically and react to button events.

Create the translation service
For translating arbitrary text to pirate speech, we use the ARRPI API
(http://isithackday.com/arrpi.php) that offers an easy to use interface for the
conversion. The ARRPI accepts a text parameter in the requests and the response
directly gives you the respective translation.

For setting up the GET query to this endpoint you are free to use the Http API of
you choice. Android already comes with two options:

1) Apache HttpClient
2) HttpUrlConnection (favored since Android 3.0)

While those implementations are sufficient for the task, they are cumbersome to set
up and to handle. Therefore I encourage you to use a third party wrapper library of
your choice which encapsulate the lower level functionality and provide a
convenient high level API. Possible solutions:

1) Retrofit (http://square.github.io/retrofit/)
2) RestTemplate (http://projects.spring.io/spring-android/)
3) Volley (https://developers.google.com/events/io/sessions/325304728)

PEM (Android) SS 2014 Assignment 01

 3

Note: Some libraries already take care of dispatching the Http requests on a
separate thread if you decide to use callbacks. So dependent on your choice, it
might no be necessary to dispatch the requests yourself onto a different thread.

Wrap all the translation functionality in a new class in order to keep the activity
clean. This will also allow you to reuse it in other places when needed.

Afterwards add the service to the Activity as follows:

1) Clicking the translate button will start a request with the text from the input
text field

2) Once a response is received, it should be displayed in the respective text
field

Provide a history Activity that displays recent translations
Now that we have the translation service up and running, it’s time to add a history
that displays the last translations (max 20, older ones will be removed).

Create a new activity and a respective layout, only containing a ListView used to
display the latest entries. Each item in the list should show two lines, the upper one
displaying the beginning of the original text, while the lower one displays the
beginning of the translation.
In order to display the history, you have to come up with an implementation for
storing past translations. Make sure that you only keep the last 20 requests in
there.

Note: Android already provides build-in list item types with two rows and a
ListAdapter that operates on arrays.

Add a NavigationDrawer to navigate do different Activities
In order to navigate to the history Activity, add a NavigationDrawer that displays two
entries:

1) Pirate Translation
2) Pirate History

PEM (Android) SS 2014 Assignment 01

 4

A click on the “Pirate History” is starting a new history activity that is displayed on
top of the current one. Using the back button on his will bring you back to your
translation Activity. A click on “Pirate Translation” does nothing (except closing the
drawer).

Note: In an upcoming assignment, we’ll get into the world of fragments and clean
up the UI workflow. For now the behavior using plain activities will be sufficient.

Master Students: Make the history persistent in a SQLite database
This applies to master students only!

Replace the current history storing functionality with an SQLite store. Save the
history of translations in an SQLite database on the device and implement an
access wrapper for the items.
The history Activity should then use this information source for displaying the recent
translations (again, max 20) and also persist the history throughout App restarts.

Submission
Please zip up your complete Android project and hand it in via Uniworx. Projects
that do not compile due to errors will not be accepted.

