Design and Creation

SWAL
Ozan Saltuk & Ismail Kosan
7. Mai 2014
Design and Creation - Motivation

„The ultimate goal of computer science and programming: The art of designing artifacts to solve intricate problems. Some call it the art of constructive thinking.“
Defining Design and Creation
Design Science and Design Science Research

• Design Science
 – Know-how for creating artifacts
 – Design is both a process and a product

• Design Science Research
 – Creation of missing knowledge
 – Design of novel or innovative artifacts
 – Analysis of the use and performance of artifacts
 – Problem solving paradigm
Defining Design and Creation

Design Science vs. Natural Science

• Design Science
 – Solve problems
 – Produce and apply knowledge to create effective artifacts
 – Derives from engineering
 – Build and Evaluate

• Natural Science
 – Understand reality
 – Produce general theoretical knowledge
 – Derives from nature
 – Theorize and Justify
Defining Design and Creation
Normal Design vs. Design Science Research

• Normal Design
 – Is routine
 – Desires a smooth process without any risks

• Design Science Research
 – Creates new interesting knowledge
 – Demonstration of academic qualities
 – Profits from unpredictable situations
 – „We don't know how to do this yet“
 – Focuses on risky and uncertain areas
 – Improvement, Invention, Exaptation
Design and Creation Process
Design Science Research Process Model
Design and Creation Process
Design Science Research Process Model - Awareness

• Awareness
 – Recognition and articulation problems
 – Can come from:
 • Studying literature
 • Findings in another discipline
 • Expressing the need for something
 • Field research
 • New developments in technology
 – Output: Proposal for a new research effort
Design and Creation Process
Design Science Research Process Model - Suggestion

• Suggestion
 – Tentative idea of how the problem might be addressed
 – Creative step to envision a new functional artifact
 – Novel configuration of existing and/or new elements
 – Output: Tentative Design
Design and Creation Process
Design Science Research Process Model - Development

• Development
 – Implementation of the tentative design
 – Depends on the kind of the artifact
 – Output: Artifacts

• Artifacts
 – Constructs
 – Models
 – Methods
 – Instantiations
Design and Creation Process
Design Science Research Process Model - Artifacts

- Constructs
 - Form the vocabulary of a domain
 - Describe problems within the domain and specify their solutions
 - e.g. notion of entities, objects, data types

- Models
 - Combination of constructs
 - Represent situations as problem and solution statements
 - Concern of models is utility
 - e.g. UML, use case scenario, storyboards
Design and Creation Process
Design Science Research Process Model - Artifacts

• Methods
 – Set of steps used to perform a task and/or solve a problem
 – Based on a set of underlying constructs and models of the solution space
 – Methodological tools are used by natural scientists
 – e.g. an algorithm or manual
Design and Creation Process
Design Science Research Process Model - Artifacts

• Instantiations
 – Realization of artifacts in its environment
 – Demonstrate the feasibility and effectiveness of the models and methods they contain
 – Their study can lead to significant advancements in design and natural science
 – e.g. software, hardware
Design and Creation Process
Design Science Research Process Model - Evaluation

• Evaluation
 – „How well does it work“
 – Metrics and measurements are required
 • e.g. functionality, completeness, performance, usability, aesthetics, reliability, ...
 – Hypothesis about the behavior of the artifacts
 – Analysis either confirms or contradicts a hypothesis
 – Leads to new awareness (iterative) or to conclusion
 – Output: Performance measures
Design and Creation Process
Design Science Research Process Model - Conclusion

• Conclusion
 – Determine why and how the artifact worked or did not work within its environment
 – Results of the research effort consolidated and written up
 – Knowledge categorized either as firm or as loose ends
 – Theorize and justify principles from natural science can be applied
 – Output: Results (Publications)
Design and Creation Research in IS & Computing
IS Research Framework

• Information Systems are implemented within an organization for the purpose of improving effectiveness and efficiency
• Hevner et al. created a conceptual framework for understanding, executing and evaluating IS research
Design and Creation Research in IS & Computing

IS Research Framework

Environment
- People
 - Roles
 - Capabilities
 - Characteristics
- Organizations
 - Strategies
 - Structure & Culture
 - Processes
- Technology
 - Infrastructure
 - Applications
 - Communications
 - Architecture
 - Development
 - Capabilities

Relevance
- Business Needs

IS Research
- Develop/Build
 - Theories
 - Artifacts
- Justify/Evaluate
 - Analytical
 - Case Study
 - Experimental
 - Field Study
 - Simulation

Rigor
- Assess
- Refine
- Applicable Knowledge

Knowledge Base
- Foundations
 - Theories
 - Frameworks
 - Instruments
 - Constructs
 - Models
 - Methods
 - Instantiations
- Methodologies
 - Data Analysis
 - Techniques
 - Formalisms
 - Measures
 - Validation Criteria

Application in the Appropriate Environment

Additions to the Knowledge Base
Design and Creation Research in IS & Computing

Design Science Research Cycle

- **Relevance Cycle**: Provides the requirements
- **Rigor Cycle**: Provides past knowledge
- **Design Cycle**: Design alternatives until a satisfactory design is reached
Design and Creation Research in IS & Computing
Effective Design Science Research Guidelines

• To conduct and evaluate good design science research in IS
• Assists researchers, reviewers, editors, and readers to understand the requirements for effective design science research
Design and Creation Research in IS & Computing
Effective Design Science Research Guidelines

• 7 Guidelines
 – Design as an Artifact
 – Problem Relevance
 – Design Evaluation
 – Research Contributions
 – Research Rigor
 – Design as a Search Process
 – Communication of Research
Design and Creation Research in IS & Computing
Challenges in Design Science Research

• Inadequate knowledge base
• „No relationship to real world environment“
• Rapid advances in technology
• Difficulty in applying rigorous evaluation methods
Advantages and Disadvantages of Design and Creation Research

• **Advantages**
 – Something tangible to show
 – Appeals to people who enjoy technical and creative development work
 – Expected mode of research in some computing areas
 – Plenty of scope for proposing and developing new IT artifacts, therefore making a contribution to knowledge

• **Disadvantages**
 – Justification of research may be required
 – Risky if you do not have the technical or artistic skills
 – Difficult to generalize
 – Success may depend on the researchers being present
 – May produce perishable research
Take-Away Message

• Important part of technological development
• Inseperable from natural science
• Creation of new knowledge is seeked
• To solve problems through designing innovative artifacts
• Build and Evaluate
• Iterative Process - No „perfect“ product
• Use of frameworks in IS (7 Guidelines) is recommended
Literature

Discussion

• What makes a design good?
• How can you achieve a good design?
• From existing technologies that you have used, which one do you think was the most innovative? Why?
• In which area do you think will be the next big design innovation?
• Have you ever used design and creation strategies in your past projects? Which problems did you have?
Discussion

Welcome to FreeDOS

CuteMouse v1.9.1 alpha 1 [FreeDOS]
Installed at PS/2 port
C:\\>ver

FreeCom version 0.82 pl 3 XMS_Swap [Dec 10 2003 06:49:21]

c:\>dir
Volume in drive C is FREEDOS_C95
Volume Serial Number is 0E4F-19E8
Directory of C:\

FDOS <DIR> 00-26-04 6:23p
AUTOEXEC BAT 435 00-26-04 6:24p
BOOTSECT BIN 512 00-26-04 6:23p
COMMAND COM 93,963 00-26-04 6:24p
CONFIG SYS 801 00-26-04 6:24p
DOSSBOOT BIN 512 00-26-04 6:24p
KERNEL SYS 45,815 04-17-04 9:19p

6 file(s) 142,830 bytes
1 dir(s) 1,064,517,632 bytes free

c:_-

http://upload.wikimedia.org/wikipedia/commons/9/94/FreeDOS_Beta_9_pre_release5_%28command_line_interface%29_on_Bochs_sshot20040912.png

http://upload.wikimedia.org/wikipedia/commons/d/d4/X-Window-System.png