Chapter 4 - 3D Camera & Optimizations, Rasterization

- Classical Viewing Taxonomy
- 3D Camera Model
- Optimizations for the Camera
- How to Deal with Occlusion
- Rasterization
 - Clipping
 - Drawing lines
 - Filling areas

Partially based on material from:
6th ed, Addison-Wesley 2012
Classical Views of 3D Scenes

- As used in arts, architecture, and engineering
 - Traditional terminology has emerged
 - Varying support by 3D graphics SW and HW
- Assumptions:
 - Objects constructed from flat faces (polygons)
 - Projection surface is a flat plane
 - Nonplanar projections also exist in special cases
- General situation:
 - Scene consisting of 3D objects
 - Viewer with defined position and projection surface
 - Projectors (Projektionsstrahlen) are lines going from objects to the projection surface
- Main classification:
 - Parallel projectors or converging projectors
Taxonomy of Views

- planar geometric projections
 - parallel
 - multiview
 - orthographic
 - isometric
 - dimetric
 - trimetric
 - axonometric
 - dimetric
 - trimetric
 - oblique
 - 1 point
 - 2 point
 - 3 point
 - perspective

Angel 2012
Orthographic Projection

- Projectors are orthogonal to the projection plane
- In the “pure” case, projection plane is parallel to a coordinate plane
 - top/front/side view
 - Often used as a multi-view combination
 - together with overview (e.g. isometric view)
- Advantage:
 - No distortions
 - Can be used for measurements
Axonometric Projections

- Using orthographic projection, but with arbitrary placement of projection plane

- Classification of special cases:
 - Look at a corner of a projected cube
 - How many angles are identical?
 - None: *trimetric*
 - Two: *dimetric*
 - Three: *isometric*

- Advantage:
 - Preserves lines
 - Somehow realistic

- Disadvantage:
 - Angles not preserved
Optical Illusions in Isometric Projections

Oblique Projection (*Schiefe Parallelprojektion*)

- Projectors are not orthogonal to projection plane
 - Usually projection plane parallel to one coordinate plane
- Traditional subclasses:
 - *Cavalier perspective*
 - Constant angle (30°/45°) between direction of projectors (dop) and projection plane
 - No foreshortening
 - *Cabinet perspective*
 - Constant angle (30°/45°/63.4°) between dop and projection plane
 - Foreshortening (Verkürzung) (of depth) by factor 0.5
Perspective Projection (*Perspektivische Projektion*)

- Projectors converge at *center of projection* (cop)
- Parallel lines (not parallel to projection plane) appear to converge in a *vanishing point* (*Fluchtpunkt*)

Advantage:
- very realistic

Disadvantage:
- non-uniform foreshortening
- only few angles preserved
Number of Vanishing Points in Perspective Projection

One point
Two points
Three points

vanishing points

one-point perspective
two-point perspective
three-point perspective

http://mathworld.wolfram.com/Perspective.html
How to Realize Projection in Three.js?

- Parallel / Orthographic projections:

 - var camera=new THREE.OrthographicCamera(w/-2, w/2, h/2, h/-2, 1, 1000);
 - scene.add(camera);

- Perspective projections:

 - var camera=new THREE.PerspectiveCamera(45, w/h, 1, 1000);
 - scene.add(camera);
Chapter 4 - 3D Camera & Optimizations, Rasterization

- Classical Viewing Taxonomy
- 3D Camera Model
- Optimizations for the Camera
- How to Deal with Occlusion
- Rasterization
 - Clipping
 - Drawing lines
 - Filling areas
The 3D rendering pipeline (our version for this class)

1. 3D models in model coordinates
2. 3D models in world coordinates
3. 2D Polygons in camera coordinates
4. Pixels in image coordinates

- Scene graph
- Camera
- Rasterization
- Animation, Interaction
- Lights
Perspective Projection and Photography

• In photography, we usually have the *center of projection (cop)* between the object and the image plane
 – Image on film/sensor is upside down

• In CG perspective projection, the image plane is in front of the camera!
The mathematical camera model for perspective proj.

- The Camera looks along the **negative Z axis**
- Image plane at $z = -1$
- 2D image coordinates
 - $-1 < x < 1,$
 - $-1 < y < 1$
- Two steps
 - projection matrix
 - perspective division
Projection Matrix (one possibility)

- X and Y remain unchanged
- Z is preserved as well
- 4th (homogeneous) coordinate \(w \neq 1 \)

\[
\begin{pmatrix}
 X_{\text{sicht}} \\
 Y_{\text{sicht}} \\
 Z_{\text{sicht}} \\
 W_{\text{sicht}}
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix} =
\begin{pmatrix}
 X \\
 Y \\
 Z \\
 -Z
\end{pmatrix}
\]

- Transformation from world coordinates into view coordinates
 - This means that this is not a regular 3D point
 - otherwise the 4th component \(w \) would be \(= 1 \)
 - View coordinates are helpful for culling (see later)
Perspective Division

\[
\begin{pmatrix}
 x_{\text{bild}} \\
 y_{\text{bild}} \\
 z_{\text{bild}} \\
 w_{\text{bild}}
\end{pmatrix} = \frac{1}{w_{\text{sicht}}}
\begin{pmatrix}
 x_{\text{sicht}} \\
 y_{\text{sicht}} \\
 z_{\text{sicht}} \\
 w_{\text{sicht}}
\end{pmatrix} = \begin{pmatrix}
 \frac{x_{\text{sicht}}}{w_{\text{sicht}}} \\
 \frac{y_{\text{sicht}}}{w_{\text{sicht}}} \\
 \frac{z_{\text{sicht}}}{w_{\text{sicht}}} \\
 \frac{w_{\text{sicht}}}{w_{\text{sicht}}}
\end{pmatrix} = \begin{pmatrix}
 \frac{x}{w} \\
 \frac{y}{w} \\
 -1 \\
 1
\end{pmatrix}
\]

- Divide each point by its 4th coordinate \(w\)

- Transformation from view coordinates into image coordinates

- since \(w = -z\) and we are looking along the negative \(Z\) axis, we are dividing by a positive value

- hence the sign of \(X\) and \(Y\) remain unchanged

- points further away (larger absolute \(Z\) value) will have smaller \(x\) and \(y\)
 - this means that distant things are smaller
 - points on the optical axis will remain in the middle of the image
Controlling the Camera

• So far we can only look along negative Z

• Other camera positions and orientations:
 – Let C be the transformation matrix that describes the camera’s position and orientation in world coordinates
 – C is composed from a translation and a rotation, hence can be inverted
 – transform the entire world by C^{-1} and apply the camera we know ;-)

• Other camera view angles?
• If we adjust this coefficient
 – scaling factor will be different
 – larger abs value means _________ angle.
 – could also be done in the division step

\[
\begin{pmatrix}
 x_{sicht} \\
 y_{sicht} \\
 z_{sicht} \\
 w_{sicht}
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix} =
\begin{pmatrix}
 x \\
 y \\
 z \\
 -z
\end{pmatrix}
\]
From image to screen coordinates

- Camera takes us from world via view to image coordinates
 - \(-1 < x_{\text{image}} < 1, \quad -1 < y_{\text{image}} < 1\)

- In order to display an image we need to go to screen coordinates
 - assume we render an image of size \((w,h)\) at position \((x_{\text{min}}, y_{\text{min}})\)
 - then \(x_{\text{screen}} = x_{\text{min}} + w(1+x_{\text{image}})/2, \quad y_{\text{screen}} = y_{\text{min}} + h(1-y_{\text{image}})/2\)
Chapter 4 - 3D Camera & Optimizations, Rasterization

- Classical Viewing Taxonomy
- 3D Camera Model
- Optimizations for the Camera
- How to Deal with Occlusion
- Rasterization
 - Clipping
 - Drawing lines
 - Filling areas
Optimizations in the camera: Culling

- view frustum culling
- back face culling
- occlusion culling

View Frustum Culling

- Goal: Just render objects within the viewing volume (aka view frustum)
- Need an easy test for this...

- Z-Axis: between 2 clipping planes
 - \(z_{\text{near}} > z_{\text{view}} > z_{\text{far}} \) (remember: negative z)

- X- and Y-Axis: inside the viewing cone
 - \(-w_{\text{view}} < x_{\text{view}} < w_{\text{view}}\)
 - \(-h_{\text{view}} < y_{\text{view}} < h_{\text{view}}\)

- Two simple comparisons for each axis!
Octrees Speed up View Frustum Culling

- Naive frustum culling needs $O(n)$ tests
 - where $n =$ number of objects

- Divide entire space into 8 cubes
 - see which objects are inside each

- Subdivide each cube again
 - Repeat recursively until cube contains less than k objects

- Instead of culling objects, cull cubes

- Needs $O(\log n)$ tests

Back-face Culling

- Idea: polygons on the back side of objects don’t need to be drawn
- Polygons on the back side of objects face backwards
- Use the Polygon normal to check for orientation
 - normals are often stored in face mesh structure,
 - otherwise can be computed as cross product of 2 triangle edges
 - normal faces backwards if angle with optical axis is < 90° (i.e. scalar product is > 0)

$$A \cdot B = |A| \ |B| \cos\theta$$
Occlusion Culling

- Idea: objects that are hidden behind others don’t need to be drawn
- Efficient algorithm using an occlusion buffer, similar to a Z-buffer
Chapter 4 - 3D Camera & Optimizations, Rasterization

• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion

• Rasterization
 – Clipping
 – Drawing lines
 – Filling areas
Occlusion: The problem space in general

- Need to determine which objects occlude which others
- Want to draw only the frontmost (parts of) objects

- Culling worked at the object level, now look at the polygons

- More general: draw the frontmost polygons
 - ..or maybe parts of polygons?

- Occlusion is an important depth cue for humans
 - need to get this really correct!
Occlusion: simple solution: depth-sort

- Regularly used in 2D vector graphics

- Sort polygons according to their z position in view coordinates
- Draw all polygons from back to front
- Back polygons will be overdrawn
- Front polygons will remain visible

- Problem 1: self-occlusion
 - not a problem with triangles ;-)

- Problem 2: circular occlusion
 - think of a pin wheel!
Occlusion: better solution: Z-Buffer

• Idea: compute depth not per polygon, but per pixel!
• Approach: for each pixel of the rendered image (frame buffer) keep also a depth value (Z-buffer)
• Initialize the Z-buffer with z_{far} which is the far clipping plane and hence the furthest distance we need to care about
• loop over all polygons
 – Determine which pixels are filled by the polygon
 – for each pixel
 • compute the z value (depth) at that position
 • if $z >$ value stored in Z-buffer (remember: negative Z!)
 – draw the pixel in the image
 – set Z-buffer value to z

Z-Buffer Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{cccccccc}
\infty & \infty \\
\infty & \infty \\
\infty & \infty \\
\infty & \infty \\
\infty & \infty \\
\infty & \infty \\
\infty & \infty \\
\infty & \infty \\
\end{array} \]

+ \[\begin{array}{cccc}
5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 \\
\end{array} \]

= \[\begin{array}{cccccccc}
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & \infty \\
5 & 5 & 5 & 5 & 5 & 5 & \infty & \infty \\
5 & 5 & 5 & 5 & 5 & \infty & \infty & \infty \\
5 & 5 & 5 & 5 & \infty & \infty & \infty & \infty \\
5 & 5 & 5 & \infty & \infty & \infty & \infty & \infty \\
5 & 5 & \infty & \infty & \infty & \infty & \infty & \infty \\
5 & \infty \\
\end{array} \]

+ \[\begin{array}{cccc}
7 & 6 & 5 & 6 \\
4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 \\
\end{array} \]

= \[\begin{array}{cccccccc}
5 & 5 & 5 & 5 & 5 & 5 & \infty & \infty \\
5 & 5 & 5 & 5 & 5 & 5 & \infty & \infty \\
5 & 5 & 5 & 5 & 5 & 5 & \infty & \infty \\
5 & 5 & 5 & 5 & 5 & 5 & \infty & \infty \\
2 & 3 & 4 & 5 & 6 & 7 & \infty & \infty \\
\end{array} \]
Z-Buffer: Tips and Tricks

• Z-Buffer normally built into graphics hardware

• Limited precision (e.g., 16 bit)
 – potential problems with large models
 – set clipping planes wisely!
 – never have 2 polygons in the exact same place
 – otherwise typical errors (striped objects)

• Z-Buffer can be initialized partially to something else than x_{far}
 – at pixels initialized to x_{near} no polygons will be drawn
 – use to cut out holes in objects
 – then rerender objects you want to see through these holes

http://www.youtube.com/watch?v=TogP1J9iUcE
Chapter 4 - 3D Camera & Optimizations, Rasterization

• Classical Viewing Taxonomy
• 3D Camera Model
• Optimizations for the Camera
• How to Deal with Occlusion

• Rasterization
 – Clipping
 – Drawing lines
 – Filling areas
The 3D rendering pipeline (our version for this class)

3D models in model coordinates → 3D models in world coordinates → 2D Polygons in camera coordinates → Pixels in image coordinates

- Scene graph
- Camera
- Rasterization
- Animation, Interaction
- Lights
Rasterization: The Problems

• **Clipping**: Before we draw a polygon, we need to make sure it is completely inside the image
 – if it already is: OK
 – if it is completely outside: even better ;-)
 – if it intersects the image border: need to do clipping!

• **Drawing lines**: How do we convert all those polygon edges into lines of pixels?

• **Filling areas**: How do we determine which screen pixels belong to the area of a polygon?

• Part of this will be needed again towards the end of the semester in the shading/rendering chapter

http://iloveshaders.blogspot.de/2011/05/how-rasterization-process-works.html
Clipping (Cohen & Sutherland)

- Clip lines against a rectangle
- For end points P and Q of a line
 - determine a 4 bit code each
 - 10xx = point is above rectangle
 - 01xx = point is below rectangle
 - xx01 = point is left of rectangle
 - xx10 = point is right of rectangle
 - easy to do with simple comparisons

- Now do a simple distinction of cases:
 - P OR Q = 0000: line is completely inside: draw as is (Example A)
 - P AND Q != 0000: line lies completely on one side of rectangle: skip (Example B)
 - P != 0000: intersect line with all reachable rectangle borders (Ex. C+D+E)
 - if intersection point exists, split line accordingly
 - Q != 0000: intersect line with all reachable rectangle borders (Ex. C+D+E)
 - if intersection point exists, split line accordingly
Drawing a Line: Naïve Approach

- Line from \((x_1, y_1)\) to \((x_2, y_2)\), Set \(dx := x_2 - x_1\), \(dy := y_2 - y_1\), \(m := dy/dx\)
- Assume \(x_2 > x_1\), otherwise switch endpoints
- Assume \(-1 < m < 1\), otherwise exchange \(x\) and \(y\)

For \(x\) from 0 to \(dx\) do:

\[
\text{setpixel} (x_1 + x, y_1 + m \times x)
\]

- In each step:
 - 1 float multiplication
 - 1 round to integer
Drawing a line: Bresenham‘s Algorithm

- Idea: go in incremental steps
- Accumulate error to ideal line
 - go one pixel up if error beyond a limit
- Uses only integer arithmetic
- In each step:
 - 2 comparisons
 - 3 or 4 additions

dx := x_2 - x_1; dy := y_2 - y_1;
d := 2*dy – dx; DO := 2*dy;
dNO := 2*(dy - dx);
x := x_1; y := y_1;
fehler := d;
setpixel (x,y);
fehler := d;
WHILE x < x_2
 x := x + 1;
 IF fehler <= 0 THEN
 fehler := fehler + DO
 ELSE
 y := y + 1;
 fehler = fehler + dNO
 END IF;
 setpixel (x,y);
END WHILE

Antialiased Lines

- Problem: Bresenham’s lines contain visible steps (aliasing effects)
- Opportunity: we can often display greyscale
- Idea: use different shades of grey as different visual weights
 - instead of filling half a pixel with black, fill entire pixel with 50% grey

- Different algorithms exist
 - Gupta-Sproull for 1 pixel wide lines
 - Wu for infinitely thin lines
Wu’s Antialiasing Approach

• Loop over all x values
• Determine 2 pixels closest to ideal line
 – slightly above and below
• Depending on distance, choose grey values
 – one is perfectly on line: 100% and 0%
 – equal distance: 50% and 50%
• Set these 2 pixels
Antialiasing in General

• Problem: hard edges in computer graphics
• Correspond to infinitely high spatial frequency
• Violate sampling theorem (Nyquist, Shannon)
 – reread 1st lecture „Digitale Medien“

• Most general technique: Supersampling
• Idea:
 – render an image at a higher resolution
 • this way, effectively sample at a higher resolution
 – scale it down to intended size
 – interpolate pixel values
 • this way, effectively use a low pass filter

Line Drawing: Summary

• With culling and clipping, we made sure all lines are inside the image
• With algorithms so far we can draw lines in the image
 – even antialiased lines directly
• This means we can draw arbitrary polygons now (in black and white)

• All algorithms extend to color
 – just modify the setpixel (x, y) implementation
 – choice of color not always obvious (think through!)
 – how about transparency?

• All these algorithms implemented in hardware
• Other algorithms exist for curved lines
 – mostly relevant for 2D graphics
Filling a Polygon: Scan Line Algorithm

• Define parity of a point in 2D:
 – send a ray from this point to infinity
 – direction irrelevant (!)
 – count number of lines it crosses
 – if 0 or even: even parity (outside)
 – if odd: odd parity (inside)

• Determine polygon area \((x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}})\)
• Scan the polygon area line by line
• Within each line, scan pixels from left to right
 – start with parity = 0 (even)
 – switch parity each time we cross a line
 – set all pixels with odd parity
Rasterization Summary

- Now we can draw lines and fill polygons
- All algorithms also generalize to color
- How do we determine the shade of color?
 - this is called shading and will be discussed in the rendering section