Interaction Design

Chapter 6 (June 8th, 2017, 9am-12pm):
Laws of Interaction Design
Why laws? What for?

- We will learn laws about:
 - computers
 - human motor skills
 - human cognition

- There are 3 good reasons for laws in ID:
 - **describe**: understand what is going on
 - **predict** what will happen if…
 - **generate** new alternatives
Double Diamond

- describe
- predict
- generate

Why? and How?

source: [2]
Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law
- Guiard’s Kinematic chain model
- Hick’s law
- Law of practice
- Murphy’s law
Moore’s law

“The complexity for minimum component costs has increased at a rate of roughly a factor of two per year…Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.”

[Moore, Gordon E. "Cramming more components onto integrated circuits". Electronics, Volume 38, Number 8, April 19, 1965.]
Moore’s law illustration

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

Moore’s law implications

Don’t worry too much about:

• computing power
• storage capacity
• screen resolution
• device size
• weight
• battery life (?)
Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law
- Guiard’s Kinematic chain model
- Hick’s law
- Law of practice
- Murphy’s law
Buxton’s law

Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law
- Guiard’s Kinematic chain model
- Hick’s law
- Law of practice
- Murphy’s law
Fitts’ law

The time to acquire a target is a function of the distance to and width of the target.

Fitts’ law

\[MT = a + b \times ID = a + b \times \log_2 \left(\frac{D}{W} + 1 \right) \]

- **D**: Distance
- **W**: Width

Coefficients
- **a**: Intercept
- **b**: Slope

Movement Time
Speed-accuracy tradeoff:

http://www.youtube.com/watch?v=kly2QA1bFc8
Implications of Fitts’ law

Larger targets are easier to hit
 -> maximize button size

Movement time increases (logarithmically) with distance
 -> minimize distances
 -> no movement is even better!

Infinite targets:
 -> leverage screen borders
 -> leverage corners

Illustration from http://particletree.com/features/visualizing-fitts-law/
Bigger Is Not Always Better

Movement direction to target

Logarithmic improvements with size

MacKenzie's reevaluation of Card's Fitts' Experiment for text selection

Illustration from http://particletree.com/features/visualizing-fittss-law/
Stu Card

A Supporting Science

Interview March 2002

The Mouse and the Desktop Chapter 1
Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law
- Guiard’s Kinematic chain model
- Hick’s law
- Law of practice
- Murphy’s law
Why is it called Steering Law??

- Early work focused on car driving scenarios and models with straight tunnels
- Various example tunnel shapes have been explored
Steering law on curved paths

average time to navigate through the path

\[T = a + b \cdot \int_{S} \frac{1}{W(s)} \, ds \]

experimentally fitted constants

width of the path at \(s \)
Example application of the steering law

\[T = a_1 + b_1 \times \log_2\left(\frac{nh}{h} + 1\right) + a_2 + b_2 \times \frac{w}{h} + \ldots \]

vertical: Fitts’ law

horizontal: steering law
Mini-discussion

How can we use fitts’ law and steering law to make a computer game more challenging?
Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law

- Guiard’s Kinematic chain
- Hick’s law
- Law of practice
- Murphy’s law
A human capability

From The Two-Handed Desktop Interface: Are We There Yet? [MacKenzie & Guiard, 2001]
Guiard’s Kinematic Chain

“Under standard conditions, the spontaneous writing speed of adults is reduced by some 20% when instructions prevent the non-preferred hand from manipulating the page”

Non-dominant hand provides a frame of reference for the dominant hand

- Non-dominant hand operates at a coarse temporal and spatial scale;
- Dominant hand operates at a fine temporal and spatial scale
Two handed-interaction at the desktop

From The Two-Handed Desktop Interface: Are We There Yet? [MacKenzie & Guiard, 2001]
Mini-brainstorming

Which tasks in daily life follow a similar distribution of roles between the hands?

Which ones don’t ???
Laws of Interaction Design

• Moore’s law
• Buxton’s law
• Fitts’ law
• Steering law
• Guiard’s Kinematic chain
• Hick’s law
• Law of practice
• Murphy’s law
Hick’s law

Given \(n \) known and equally probable choices, the average reaction time \(T \) required to choose among them is:

\[
T = b \cdot \log_2 (n + 1)
\]
Hick’s Law Examples (really? let’s discuss!)

http://www.photosophic.com/iphone_screen
In another context, and slightly wrong ;-)...

https://www.youtube.com/watch?v=w0hJveJ8Hp0
Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law
- Guiard’s Kinematic chain
- Hick’s law
- Law of practice
- Murphy’s law
The Power Law of Practice

- When performing a task based on practice trials, people improve in speed at a decaying exponential rate.
- The time needed for a particular task decreases in proportion to the number of practice trials taken raised to a power of about $a = -0.4$
- The logarithm of the time needed for a particular task decreases linearly with the logarithm of the number of practice trials taken (this formulation is for the math geeks... ;-)
Laws of Interaction Design

- Moore’s law
- Buxton’s law
- Fitts’ law
- Steering law
- Hick’s law
- Guiard’s Kinematic chain
- Law of practice
- Murphy’s law
Murphy’s law

“Whatever can go wrong, will go wrong.“
[Edward Aloysius Murphy Jr., 1949]

“If there's more than one possible outcome of a job or task, and one of those outcomes will result in disaster or an undesirable consequence, then somebody will do it that way.“
Implications of Murphy’s law

- Prepare for human errors, wrong input etc.
 - do sanity checks in dialogs
 - provide useful defaults
 - make serious mistakes hard

- When building stuff, provide extra time for:
 - mistakes in manufacturing
 - non-functioning tools
 - faulty material
 - misunderstandings
Murphy’s vs. Fitts' law

http://www.codinghorror.com/blog/2010/03/the-opposite-of-fitts-law.html
Murphy’s law is still reality!

What have we learned today?

about computers:
- Moore’s law
- Buxton’s law

about human motor skills:
- Fitts’ law
- Steering law
- Guiard’s Kinematic chain model

about human cognition:
- Hick’s law
- Law of practice
- Murphy’s law