Advanced Seminar in Media Informatics

Mohamed Khamis | Hanna Schneider | Yuanting Liu

Advanced Seminar in Media Informatics | Munich | 2018-04-10
Overview

Requirements:
Currently enrolled in LMU master program (Informatics, Media Informatics, HCI)
Knowledge of English

Research topics
Each student works independently on one topic.
Two students can be assigned to the same topic, but they would still work independently

Objective of the course: Understanding Scientific Research
Independent literature review
Analysis and classification of research results
Writing a scientific paper

Seminar report in English: 6-8 pages in LaTeX (LaTeX template can be found on the website)
Final presentation (15 minutes+ 5 minutes discussion)

Website: http://www.medien.ifi.lmu.de/lehre/ss18/hs/
Organization

- **Scope**: 2 SWS / 6 ECTS-Credits

- **Examiner**: Prof. Dr. Heinrich Hußmann

- **Course organizers**: Mohamed Khamis, mohamed.khamis@ifi.lmu.de
 Hanna Schneider, hanna.schneider@ifi.lmu.de
 Dr. Yuanting Liu, liu@fortiss.org
Organization (2)

- Meeting dates: selected weeks, Tuesday 16:00-18:00
- Different submissions based on the schedule
- Presentations at the end of the semester 30.07 [and 31.07] dates will be confirmed.
- Place: Thalkirchnerstr. 36, Raum 257

- Grading
 - Preliminary preparation / outline
 - 60 seconds presentation (including slides submission)
 - First draft
 - Peer review / comments from supervisors and fellow students
 - Final (revised) draft
 - Final presentation (after submitting a draft)

- Hint: Most of the literature is available only in English. Hence good English language skills are required for participation
Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Sessions (grey) and Deadlines (yellow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.04.18</td>
<td>Introduction and Topics</td>
</tr>
<tr>
<td>8.05.18</td>
<td>Submission deadline: 1. paper draft</td>
</tr>
<tr>
<td>11.05.18</td>
<td>Submission deadline: one slide for 60 seconds presentation</td>
</tr>
<tr>
<td>15.05.18 (s.t.!)</td>
<td>60 seconds presentation / Input: How to write good reviews</td>
</tr>
<tr>
<td>29.05.18</td>
<td>Submission deadline: 2. paper draft (for peer-review) submit 2x via Uniworx</td>
</tr>
<tr>
<td>8.06.18</td>
<td>Submission deadline: Reviews (submit via Uniworx as corrector)</td>
</tr>
<tr>
<td>12.06.18</td>
<td>Q & A & Feedback (optional)</td>
</tr>
<tr>
<td>13.07.18</td>
<td>Submission deadline: Final paper</td>
</tr>
<tr>
<td>17.07.18</td>
<td>Submission deadline: preliminary presentation slides</td>
</tr>
<tr>
<td>17-24.07.18</td>
<td>Mock presentations</td>
</tr>
<tr>
<td>24.07.18</td>
<td>Submission deadline: finale presentation slides</td>
</tr>
<tr>
<td>30-[31].07.18</td>
<td>Final presentations (to be confirmed)</td>
</tr>
</tbody>
</table>

Submission deadlines

Sessions (mandatory to attend)
Advanced Seminar in Media Informatics

Find the emails of the supervisors on http://mimuc.de/team/
The role of Machine Learning for UX Research

Florian Lachner

• UX Research still heavily focuses on traditional research methods such as interview, surveys or activity logging

• How can Machine Learning help researchers and designers to better understand users’ experiences?
 – Identifying Emotional States using Keystroke Dynamics
 – UX Design Innovation: Challenges for Working with Machine Learning as a Design Material
 – Mouse Tracking: Measuring and Predicting Users’ Experience of Web-based Content
 – What Can Self-Reports and Acoustic Data Analyses on Emotions Tell Us?
Biometrics - Applications and Use Cases beyond Authentication

Sarah Prange

• Biometrics are mainly used for authentication so far:
 – physiological methods as stand-alone authentication (e.g., fingerprint)
 – behavioural methods (e.g., keystroke, gait) as additional layer

• What else could we do using biometric data?

• **Variant 1: physiological biometrics**
 e.g.: identifying users by their fingerprints in a multi-touch environment
 → Fiberio

• **Variant 2: behavioural biometrics**
 e.g.: analyse behaviour and detect physical state / depression
 → Psycho-Informatics: big data shaping modern psychometrics

• Related Work:
 – Biometric Applications Related to Human Beings: There Is Life beyond Security (list of examples & related work, 2011)
 – Behavioural biometrics: a survey and classification (extensive list of behavioural biometrics, 2008)
Drawbacks & Challenges in (behavioural) biometrics

Lukas Mecke

- Biometric methods currently suffer from several challenges
 - e.g., for behavioural methods: lack of reliability, need for training time
- What kind of technical limitations do currently exist?

- Related Work:
 - Continuous User Authentication on Mobile Devices: Recent Progress and Remaining Challenges (list of security & usability issues & related work, 2016)
Persuasive Design in Mobile Learning Applications

Learning Applications (e.g., Duolingo, Babbel, Khan Academy etc.) often face a high drop-out rate after just a few weeks.

This Hauptseminar-project's goal is to shed light on the following questions:

- Is persuasive system design a solution to increase users' perseverance in using the learning application?
- What are design guidelines that apply for this specific domain?

Deep Learning in HCI: Trends, Applications, Challenges

Questions:

• How is Deep Learning integrated into interactive systems?
• Which purpose and role(s) does it serve in interactions?
• What are the (envisioned) benefits for the user?
• Which challenges remain?

Some starting points:

• Deep Learning in Neural Networks: An Overview
• Smart Reply: Automated Response Suggestion for Email
• Estimating the Finger Orientation on Capacitive Touchscreens Using Convolutional Neural Networks
• DeepWriting: Making Digital Ink Editable via Deep Generative Modeling
Recommending People to People: Reciprocal Recommender Systems

Supervisor: Sarah Aragon Bartsch – sarah.aragon.bartsch@ifi.lmu.de

- Application areas, e.g. online dating, job search
- Classification of reciprocal recommenders
- Challenges and opportunities

References:

Usable Recommender Systems

Supervisor: Sarah Aragon Bartsch – sarah.aragon.bartsch@ifi.lmu.de

- How can we design user-friendly recommender systems?
- Which interaction methods are used in recommender systems?
- How can we evaluate good recommendations?

Reference:
Context-dependent Privacy and Security Protection

• Questions
 • How can we leverage the user’s context to improve privacy and security?
 • What are aspects of context that are relevant for security and privacy?

• Starting points
 • Intuitive Security Policy Configuration in Mobile Devices Using Context Profiling http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.60
 • Why aren't Users Using Protection? Investigating the Usability of Smartphone Locking https://doi.org/10.1145/2785830.2785835
 • There is more to context than location https://doi.org/10.1016/S0097-8493(99)00120-X
Usable Security and Privacy for Older Adults

Questions:
• What are the unique Privacy and Security needs of Older Adults?
• How can we design privacy and security protection systems that protect this user group?

Starting points:
• Navigating Relationships and Boundaries: Concerns around ICT-uptake for Elderly People (CHI 2017) [https://doi.org/10.1145/3025453.3025859]
• Privacy Considerations when Designing Social Network Systems to Support Successful Ageing (CHI 2017) [https://doi.org/10.1145/3025453.3025861]
• Investigating User Authentication in the Context of Older Adults. [http://nrl.northumbria.ac.uk/11520/]

Mohamed Khamis

Federal Statistical Office, Older people in Germany and the EU, 2016
RELATIONSHIPS TO DIGITAL SYSTEMS

How can we design digital assistants in a way they are accepted rather as friends than tools? Which user features should be regarded to personalize human-machine interaction?

First Pointers:
https://doi.org/10.1111/spc3.12287
https://doi.org/10.1016/S0921-8890(02)00372-X
https://en.wikipedia.org/wiki/Tamagotchi_effect

Michael Braun
USER MODELLING IN AUTOMATED VEHICLES

How can we use the sensory capabilities of self-driving cars to better understand passengers?
Which use cases can improve user experience for passengers and what are the technological hurdles to realize them?

First Pointers:
https://doi.org/10.1145/2381416.2381432
https://doi.org/10.4271/2000-01-0349
https://doi.org/10.1007/978-3-7091-2490-1_10

Michael Braun
Challenges & Opportunities:
• Improvement of safety and comfort
• Implementation of eye-tracking inside of vehicles
• What are useful applications for eye-tracking in cars?

Related Publications:

„Using Eye-Tracking to Help Design HUD-Based Safety Indicators for Lane Changes“

„Smart Mobility: Driver State Estimation and Advanced Driver-Vehicle Interfaces“

„The Effects of Situational Demands on Gaze, Speech and Gesture Input in the Vehicle“

Making use of drivers’ glances onto the screen for explicit gaze-based interaction.
According to psychological research humans have tendencies of behavior and attitudes based on five personality traits (e.g., extraversion, conscientiousness).

Your task:
• What are relationships between personality and the interaction with technology based on research?
• What are further possibilities/ideas?

- Information seeking
- Trust & privacy
- Feedback & visualization
- Social media use
The driver’s state (e.g., drowsiness, stress) is often a cause for accidents. Making the driver aware of her state can help to improve driver safety.

Your task:
• How can driver’s states be assessed?
• What are effects of communicating the driver’s state?
• How can the driver’s state be communicated?
Empirical studies concerned with the interaction of children and technology

- How do we design interaction for children?
- How to evaluate new concepts and ideas?
- What do we have to consider?
 - The Role of Children in the Design of New Technology
 - Educational Quality
 - Playfulness in Interaction

Beat Rossmy
INDUSTRIAL ROBOTS AS CO-WORKER IN HUMAN-CENTERED COLLABORATIVE ENVIRONMENTS

Human-Robot-Interaction is a field of study dedicated to understanding, designing, and evaluating robotic systems for use by or with humans. [1]

http://humanrobotinteraction.org/1-introduction/

- Robot-centered
- Robot-cognition
- Human-centered

How is the human-centered collaboration with a industrial robot?

- Requirements on Human Needs in an industrial environment
- Technical requirements on a collaborative robot
- Modelling of Human behavior
- Use-case definition
- Design of multimodal dialogue
Intimate data in Personal Informatics: Tracking, sharing, and personal boundaries?

• What data is perceived as intimate? In what circumstances?
• Why do people track intimate data?
• What do they do with it? Tracking, storing, sharing (with whom?) and discussing (with whom?)

• Starting literature:

• Supervisors: Hanna Schneider & Mariam Hassib
<table>
<thead>
<tr>
<th>#</th>
<th>Topic</th>
<th>Supervisor</th>
<th>Student 1</th>
<th>Student 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The role of Machine Learning for UX Research</td>
<td>Florian Lachner</td>
<td>Matthias Müller</td>
<td>Mengyi Zhang</td>
</tr>
<tr>
<td>2</td>
<td>Biometrics - Applications and Use Cases beyond Authentication</td>
<td>Sarah Prange</td>
<td>Fan Fan</td>
<td>Katharina Rupp</td>
</tr>
<tr>
<td>3</td>
<td>Drawbacks & Challenges in (behavioural) biometrics</td>
<td>Lukas Mecke</td>
<td>Benedikt Strodl</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Persuasive Design in Mobile Learning Applications</td>
<td>Christina Schneegass</td>
<td>Luca Schellenberg</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Deep Learning in HCI: Trends, Applications, Challenges</td>
<td>Malin Eiband &</td>
<td>Maksimilians Verbickis</td>
<td>TzuChien Yen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daniel Buschek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Recommending People to People: Reciprocal Recommender Systems</td>
<td>Sarah Aragon Bartsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Usable Recommender Systems</td>
<td>Sarah Aragon Bartsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Context-dependent Security Protection</td>
<td>Mohamed Khamis</td>
<td>Daniel Leimig</td>
<td>Florian Mathis</td>
</tr>
<tr>
<td>9</td>
<td>Usable Security and Privacy for Older Adults</td>
<td>Mohamed Khamis</td>
<td>Andrea Ngao</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Relationships to Digital Systems</td>
<td>Michael Braun</td>
<td>Xuesong Zhang</td>
<td>Katharina Rogg</td>
</tr>
<tr>
<td>11</td>
<td>User Modeling in Automated Vehicles</td>
<td>Michael Braun</td>
<td>Julia Vehns</td>
<td>Ki Tran</td>
</tr>
<tr>
<td>12</td>
<td>The Role of Personality Traits in Human Computer Interaction</td>
<td>Sarah Völkel</td>
<td>Julian Fazekas-Con</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Interfaces for Communicating Driver's State</td>
<td>Sarah Völkel</td>
<td>Jerome Pönisch</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Topic</td>
<td>Supervisor</td>
<td>Student 1</td>
<td>Student 2</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>14</td>
<td>Empirical studies with children</td>
<td>Beat Rossmy</td>
<td>Korbinian Riedl</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Industrial robots as co-workers</td>
<td>Yuanping Liu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Eye-Tracking in Automotive Research</td>
<td>Kai Holländer</td>
<td>Kevin Edmonds</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Intimate Data in Personal Informatics</td>
<td>Hanna Schneider & Mariam Hassib</td>
<td>Diana Irmscher</td>
<td></td>
</tr>
</tbody>
</table>
Distributing (scientific) knowledge
Distributing knowledge

- Books
- Articles in journals
- Articles in conferences
- Thesis (Bachelor, Master, PhD)
- On the internet (e.g. blogs, Wikipedia)
- Talks and lectures
- Personal communication
- Patents
- ...

Distributing knowledge
Distributing knowledge

- Books
- Articles in journals
- Articles in conferences
- Thesis (Bachelor, Master, PhD)
- On the internet (e.g. blogs, Wikipedia)
- Talks and lectures
- Personal communication
- Patents
- ...

Peer review vs no peer review
Scientific Conferences

- Before the conference
 - Topics and title are defined
 - Open call for scientific contributions (i.e., papers)
 - Papers get submitted
 - Papers get peer reviewed by experts in the field
 - Authors get notification and reviews (and possibly required changes)
 - Final versions of accepted papers are submitted

- During the conference
 - One author gives a presentation
 - Typically in addition
 - Invited keynotes
 - Discussion panels

- After the conference
 - Papers are published in conference proceedings
How to find scientific articles?

- Libraries
- ACM digital library
- IEEE digital library
- Google Scholar, Citeseer
- The author’s websites
- Web search
- OPAC der Universitätsbibliothek, http://opacplus.ub.uni-muenchen.de

- ACM, IEEE, and most other sources aren’t freely available
- University has subscription for the most important sources

Get a paper:
- Try ACM, IEEE, ... from the university network
- Use Google (Scholar) to find a free source
- Go to the authors’ websites
- Polite mail to the authors
- Ask people from the library
How to access publications

Access databases (ACM, IEEE, EZB) through our university network (LRZ-VPN und – Proxy):
http://www.lrz-muenchen.de/services/netzdienste/proxy/browser-config/

You can simply use this script: javascript:location.href = window.location.href.replace("dl.acm.org","dl.acm.org.emedien.ub.uni-muenchen.de").replace("link.springer.com","link.springer.com.emedien.ub.uni-muenchen.de");

Hint: (Open source) software to manage references:
JabRef: http://jabref.sourceforge.net/download.php
BibDesk: http://bibdesk.sourceforge.net/
Mendeley: http://www.mendeley.com/
Zotero: http://www.zotero.org/
keywords into Google Scholar
refine the keywords
open everything that seems related
Precise selection techniques for multi-touch screens

H Benko, AD Wilson, P Baudisch - ... of the SIGCHI conference on Human ... , 2006 - dl.acm.org

Olwal and Feiner [19] experimented with hand gestures that activated various levels of fish-eye distortion in the interface to facilitate target selection ... Since most touch screens and tabletops cannot identify which of the individual user's fingers or hands is touching the surface ...

Touch key design for target selection on a mobile phone

YS Park, SH Han, J Park, Y Cho - ... of the 10th International conference on ... , 2008 - dl.acm.org

In addition, a hits distributions based algorithm was applied to target selection tasks, which statistically improved the performance ... Online personalization of a touch screen based keyboard.

Target size study for one-handed thumb use on multi-touch screens

P Parhi, AK Karlson, BB Bederson - ... of the 8th International conference on Human ... , 2008 - dl.acm.org

Participants were provided with both auditory and visual feedback, e.g., the green button first, enter the target sequence and the darker the region, the more comfortable.

Search within citing articles

Shift: a technique for operating pen-based interfaces using touch

D Vogel, P Baudisch - Proceedings of the SIGCHI conference on Human ... , 2007 - dl.acm.org

Abstract: Retrieving the stylus of a pen-based device takes time and requires a second hand. Especially for short intermittent interactions many users therefore choose to use their bare fingers. Although convenient, this increases targeting times and error rates. We argue that ...

Direct-touch vs. mouse input for tabletop displays

C Forlines, D Widgr, C Shen - ... Proceedings of the ... , 2007 - dl.acm.org

Abstract: We investigate the differences—in terms of both quantitative performance and subjective preference—between direct-touch and mouse input for unimanual and bimanual tasks on tabletop displays. The results of two experiments show that for bimanual tasks ...

Lucid touch: a see-through mobile device

D Widgr, C Forlines, P Baudisch, J Barnwell - ... Proceedings of the 20th ... , 2007 - dl.acm.org

Abstract: Touch is a compelling input modality for interactive devices; however, touch input on the small screen of a mobile device is problematic because a user's fingers occlude the graphical elements he wishes to work with. In this paper, we present LucidTouch, a mobile device that ...

SLAP widgets: bridging the gap between virtual and physical controls on tabletops

N. Wimmer, M. Yang, P. Baudisch - Proceedings of UIST 2006 - dl.acm.org

Abstract: We present SLAP widgets, a technique for enabling users to operate tabletop applications using both physical and virtual controls. Our approach allows users to select, drag and drop objects across the surface, as well as press virtual buttons. A key technical challenge is to sense pressure input on the paper surface, which is not easily done using image-based approaches. SLAP widgets overcome this challenge by measuring the difference in the light intensity through a user's finger and the paper surface, and encoding this information as a pressure signal. SLAP widgets are designed to work with the Multi-Touch tabletop at Stanford University, an 8 ft. x 8 ft. surface with touch sensitivity along both dimensions. Our experiments show that SLAP widgets are easy to learn and highly accurate.
Searching within certain conferences/journals

- Top HCI conference \(\rightarrow \) Conference on Human Factors in Computing Systems (CHI)
- Another top HCI conference \(\rightarrow \) Symposium on User Interface Software and Technology (UIST)
- Focusing on Automotive interfaces? \(\rightarrow \) Automotive User Interfaces and Interactive Vehicular Applications (AutoUI)
- Focusing on Eye Tracking? \(\rightarrow \) Eye Tracking Research and Applications (ETRA)

How to limit your search to these venues?
MouStress: detecting stress from mouse motion
D Sun, P Paredes, J Canny - ... conference on Human factors in computing ... 2014 - dl.acm.org
... Maehr used several metrics of mouse movement, and emotions were induced in subjects by watching short videos ... Numerous studies have demonstrated its use in detecting stress induced by cognitive and physical stressors, with varying degrees of success, e.g., mental math [2 ...

Maybe it was a joke: emotion detection in text-only communication by non-native english speakers
AMJ Hautasaari, N Yamashita, G Gao - ... Conference on Human Factors in ... 2014 - dl.acm.org
... negative emotions in a text-only chat. Gill et al. (2008) also reported some similar findings where native English speakers were accurate in detecting more complex emotions such as joy and anger expressed in blog texts [7, 8] ...

Multimodal frustration detection on smartphones
... smartphones [19]. However, due to the nature of the front camera recording, there are some problems with face and emotion recognition [20], which adds to the inherent problems of detecting emotions from physical appearances ...

Identifying emotional states using keystroke dynamics
... Many approaches for detecting user emotions have been investigated, including voice intonation analysis, facial expression analysis, physiological sensors attached to the skin, and thermal imaging of the face. Although these ...
look at everything that still seems related
Escape: A Target Selection Technique Using Visual Cues
Koji Yatani1, Kurt Parthasarathy2

1Department of Computer Science 2Computer Science and Engineering
University of Toronto 1University of Minnesota
www.dgp.toronto.edu 1www.cs.umn.edu
koji@dgp.toronto.edu kurtpar@umn.edu

ABSTRACT
Many mobile devices have touch-sensitive screens that people interact with using fingers or thumbs, but such interaction is difficult because targets are small and easily occluded, and because fingers and thumbs have only coarse visual resolution. Recent research has addressed occlusion and touch sensitivity by developing new target selection techniques and strategies. In this paper, we present a selection speed and accuracy technique called Escape, which allows users to select targets by gestures or by clicking with a standard pointer. We conducted an experiment to compare the speed and accuracy of Escape with those of a standard pointer. We also describe an algorithm that assigns icons to targets, thereby improving Escape’s performance.

Author Keywords
Target selection, finger gesture, touch screen, mobile device

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Interfaces – Input devices and strategies, Interaction styles.

INTRODUCTION
Everyone wants a mobile device to be small—until they start to use it. Tiny screens are hard to see, and tiny user interfaces are hard to control.

Many mobile devices have a screen that a user can control by touch. Although these devices can also be controlled by a stylus, many people prefer to use their thumbs [10].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2008 ACM 978-1-60558-011-0/08/04 ...$10.00.

Figure 1. (a) It is difficult to select a target when it is surrounded by other selectable objects. (b) The icons in Escape indicate fingers that disambiguate the selection. (c) A thumb tap followed by a gesture (without the release of the thumbs) enables a user to select the target quickly and correctly even when it is small or occluded by other objects.
Collected traces from 17,300 devices
Discuss challenges they faced
 Storing data on the device
 Energy constraints (users hate apps that increase battery consumption)
 Malicious apps
 Non-linear time (device's clock changes unexpectedly)
 Malicious users

[McMillan2010RiL] Donald McMillan: iPhone Software Ditribution
 Compare deploying in Apple's App Store and in APT repositories for both channels
 Developed simple memory game deployed through both channels
 Deploying in APT repository resulted in more part time developers
 The two channels result in a different gender split

[Miluzzo2010RiL] Emiliano Miluzzo, Nicholas D. Lane, Hong Lu, Andrew T. Campbell: Research in the App Store Era: Experiences from CenceMe
 Developed CenceMe, a social sensing application
 Discuss their experience including:
 Information Disclosure
 Monetary and Time Costs
 Software Robustness
 Hardware Incompatibilities

[Henze2011IJMCHI] Niels Henze, Martin Pielot, Benjamin Poppinga, Torben Schinke, Susanne Boll: My App is an Experiment: Experience report from deploying five different apps to conduct user studies
 Discuss the distribution of users
 Compare different ways to inform the user about the study
 Present the amount of collected data
Try to find a structure and repeat the process

nice

a

make structure !
Example from an introduction

- Brief introduction to the context:
 “Since the introduction of the iPhone, mobile phones with touchscreens began to dominate the smartphone market. Today, all major phone makers have touchscreen devices in their portfolio. In contrast to earlier devices, today’s smartphones are operated by touching the screen with the fingers ...”

- Describe the scope
 “...our aim is to observe and manipulate the touch behaviour of a diverse sample, a large number of devices, and various contexts. To collect the required large amount of keystrokes on a virtual keyboard we developed a mobile typing game. To attract a large number of participants ...”

- Provide an overview
 “After discussing related work, we describe the game that we developed to collect the data. We provide an overview about the data we collected after publishing the game to the Android Market. Following this, an analysis of the...”
“Karlson [7] showed that regions which are easily to reach with the thumb when considering one-handed interaction achieve the best task performance and lowest perceived difficulty. Karlson concludes that frequently used buttons should be placed in those regions. Perry and Hourcade [14] showed again that targets within easy reach of the thumb can be reached quicker but the accuracy is best when the targets are located on the left, right and top edges of the screen. Park et al. [13] analysed the success rate, error rate and convenience of 25 regions of a touchscreen when using one-handed thumb input. The authors also analysed the offset between indicated target and actual touch events. They observed location-specific offsets and discuss the idea of adjusting the location of the touch recognition area to improve the overall performance. “

Requirements and example structure

- Abstract
 - Topic and results/conclusions (ca. 150 words)

- Introduction
 - Context and aims in the research field
 - Structure and approach of this paper

- Main part
 - Introduce research field briefly
 - And history (if applicable)
 - Explain different approaches prevalent in the field (Trends, strengths and weaknesses, ...)

- Summary / discussion
 - open questions
 - reoccurring problems, potential solutions?
 - critical reflection/ conclusion

- 6 – 8 pages, 2 columns, right amount of illustrative material (not too much and not too little), no „Wall of Text“

Scientific writing

- Logical structure
- Clear and neutral language
- Correct grammar and spelling, no typos
- Avoid
 - Fuzzy or unclear descriptions („high“, „little“, „almost“, …)
 - Empty phrases (e.g. „Based on these and various other findings...“)
 - Filler words (e.g. „somewhat“, „indeed“, „remarkably“, …)
 - Tautologies (e.g. „LCD Display“ => LCD = Liquid Crystal Display)
 - Pseudo-arguments (e.g. „of course“, „as expected“, „without doubt“, …)
 - Unverifiable claims (e.g. “This is the best Hauptseminar ever!”)
But...

- Scientific writing does not need to be boring!
- It’s a balancing act! Avoid sounding flippant.
- Most importantly:
 - Sources have to be references clearly!
 - Claims have to be validated by references or clearly marked as assumptions.

(Sand-Jensen, 2007)

Table 1. Top-10 list of recommendations for writing consistently boring publications.

- Avoid focus
- Avoid originality and personality
- Write long contributions
- Remove implications and speculations
- Leave out illustrations
- Omit necessary steps of reasoning
- Use many abbreviations and terms
- Suppress humor and flowery language
- Degrade biology to statistics
- Quote numerous papers for trivial statements
Citations style

- Plagiarism
 - Any reuse of text and ideas has to be clearly marked as direct or indirect citation
 - Plagiarism counts as an attempt to deceive and will result in failure of the class
 - http://www.medien.ifi.lmu.de/lehre/Plagiate-Ifl.pdf
- If you cite something always reference the primary source (not the secondary)

- If you use a LaTeX template citation style is automatically regulated
- Online sources always need to include author names and date and time of last access
- Wikipedia: good for your understanding but please do not cite it
PLAGIARISM!!!!
Formatierung

- Largely automated
 - with LaTeX und CLS-file
- Having a section 1.1 requires a section 1.2
- Section headings should not exceed one line
- Paragraphs
 - Are separated by a new line in the .TEX file
- Avoid footnotes
- What needs to be referenced?
 - Literature in the bibliography needs to be referenced in the text
 - Figures and tables need to be referenced in the text
- Final submission includes: LaTeX Source + pdf-Datei
 - complete LaTeX-Source (.tex, .bib, figures, ...) and pdf in one zip-archiv
- Weiterentwicklung des Textsatzprogramms TeX, einfachere Benutzung
- Kein WYSIWYG
- Prinzip: Trennung von Inhalt und Gestaltung
 - Autor kümmert sich ausschließlich um den Inhalt
 - Gestaltung durch Einbindung von Formatierungsklassen
- Standard für wissenschaftliche Publikationen
- Vorteile
 - Automatische Generierung von Gliederung, Abbildungsverzeichnissen, Index, Bibliographien, etc.
 - Einfache Formatierung von mathematischen Formeln
 - Einfache Verwaltung / Einbindung von Literaturhinweisen
- Nachteile
 - Am Anfang gewöhnungsbedürftig
 - Positionierung von Grafiken teils umständlich
Documents in LaTeX

```latex
\title{Mein Titel}
\tableofcontents
\section{Überschrift}
Text des Kapitels 1 ...
\subsection{Unterüberschrift}
Text des Kapitels 1.1 ...
\cite{Huber}

@article{Huber,
  author = "Egon Huber",
  title = "Implementing ...",
  journal = "Computer",
  year = "2001",
  ... }
```

Fertiges Dokument
Vorgehensweise

- TeX Implementierung und LaTeX GUIs / IDE installieren:
 - Windows OS:
 - siehe auch Installation mit ProText (http://www.tug.org/protext)
 - Max OS:
 - MacTex (http://www.tug.org/mactex) mit TeXShop IDE (http://www.uoregon.edu/~koch/texshop/index.html)
 - TexMaker (http://www.xm1math.net/texmaker/)
 - Linux:
 - vorinstalliert im CIP-Pool
 - Online and platform independent, doesn’t require installation but you must be online all the time
 - Overleaf
 - ShareLatex

- Download Hauptseminar LaTeX-Template
 - TEX und BIB Dateien mit IDE öffnen, Source anschauen und nachvollziehen
 - LaTeX => PDF einstellen, TEX Datei zweimal kompilieren
 - PDF bewundern
 - Text mit eigener Arbeit ersetzen
 - Bei Bedarf weitere LaTeX-Tutorials konsultieren
-Resourcen

- LaTeX Klassen und Dokumentationen
 - (Not So) Short Guide to LaTeX2e
 - LaTeX Symbols List
 - http://www.ctan.org/tex-archive/info/symbols/comprehensive
 - Grafiken importieren und formatieren

- Deutschsprachige LaTeX Kurzbeschreibung
 - http://latex.tugraz.at/_media/docs/l2kurz.pdf

- Deutschsprachige FAQs

- BibTeX–Tool und Dateiformat zur Verwaltung und Einbindung von Bibliographien
 - Fachliteratur-Referenzen werden online vielfach im BibTeXFormat angeboten (z.B. ACM, IEEE)
 - How-To: http://www.bibtex.org/Using/de
Questions?
Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Sessions (grey) and Deadlines (yellow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.04.18</td>
<td>Introduction and Topics</td>
</tr>
<tr>
<td>8.05.18</td>
<td>Submission deadline: 1. paper draft</td>
</tr>
<tr>
<td>11.05.18</td>
<td>Submission deadline: one slide for 60 seconds presentation</td>
</tr>
<tr>
<td>15.05.18 (s.t.!)</td>
<td>60 seconds presentation / Input: How to write good reviews</td>
</tr>
<tr>
<td>29.05.18</td>
<td>Submission deadline: 2. paper draft (for peer-review) submit 2x via Uniworx</td>
</tr>
<tr>
<td>8.06.18</td>
<td>Submission deadline: Reviews (submit via Uniworx as corrector)</td>
</tr>
<tr>
<td>12.06.18</td>
<td>Q & A & Feedback (optional)</td>
</tr>
<tr>
<td>13.07.18</td>
<td>Submission deadline: Final paper</td>
</tr>
<tr>
<td>17.07.18</td>
<td>Submission deadline: preliminary presentation slides</td>
</tr>
<tr>
<td>17-24.07.18</td>
<td>Mock presentations</td>
</tr>
<tr>
<td>24.07.18</td>
<td>Submission deadline: finale presentation slides</td>
</tr>
<tr>
<td>30-[31].07.18</td>
<td>Final presentations (to be confirmed)</td>
</tr>
</tbody>
</table>

Submission deadlines | Sessions (mandatory to attend)
60 seconds presentations