User Experience Design I (Interaction Design)

Day 1: History
Tutorials & Exam

• **UX1 (Interaction Design)** required for UX3 (Concept Development)
• no Podcast, so be here every week :)
• register via UniWorX!

• **tutorials** close to the lecture
• practical exercises to apply theoretical knowledge
• important preparation for the exam
• will be held in breakout sessions during the lecture
• sometimes homework

• **Bonus** of 5% in exam possible if you hand in deliverable at the end
• deliverable: sketchbook with works during and inspired by the course / documentation of the course to be delivered at the end of the semester (at the last lecture)
• **Written Exam** will be announced on the website shortly
• exact time and location will be announced soon
Course Overview:

April / May: I History & Basics

June

July
Course Overview:

II Applying UX
Course Overview:

III UX Beyond the Desktop
History

• Course Overview (Timetable) + Organizational Stuff
• What is UX (Interaction Design)?
 • The Story of the Mouse
 • PARC
 • The Desktop Metaphor
 • The GUI
Gillian Crampton Smith

-established the first Interaction Design MA program at the Royal College of Art (RCA)
-was the founder and academic director of the Interaction Design Institute Ivrea (IDII)
705 ALMA ST.

ALL SYSTEMS NORMAL
01:53P Wed 09/04/02
Looking back... (Discussion Part)
Looking back... (Discussion Part)

-shaping our lives through digital artefacts...
Looking back...

-shaping our lives through digital artefacts...
-good UX/IxD refers to a “mental model”
Looking back...

-shaping our lives through digital artefacts...
-good UX/IxD refers to a “mental model”
-good UX/IxD provides a “map” of where you are in a system, how you can move around and how you get back to the point where you started
Looking back...

-shaping our lives through digital artefacts...
-good UX/IxD refers to a “mental model”
-good UX/IxD provides a “map” of where you are in a system, how you can move around and how you get back to the point where you started
-languages of interaction design
Looking back...

- shaping our lives through digital artefacts...
- good UX/IxD refers to a “mental model”
- good UX/IxD provides a “map” of where you are in a system, how you can move around and how you get back to the point where you started
- languages of interaction design
- elements of interaction design
Looking back...

- shaping our lives through digital artefacts...
- good UX/IxD refers to a “mental model”
- good UX/IxD provides a “map” of where you are in a system, how you can move around and how you get back to the point where you started
- languages of interaction design
- elements of interaction design
- the part of the interaction designer is to design
- the **quality** on how the interaction is performed, how the system behaves
Designing for Limited Contexts of Use

(1) Professional Tools

(2) Game Machines for Teenagers

30 years ago — today
Designing for Various New Contexts of Use

Bears Several Challenges

(1) Professional Tools
(2) Game Machines for Teenagers

(1) Larger user groups (e.g. Kids/Parents/Grandparents)
(2) Various Contexts of use (e.g. Cars/Work/School/Home/Leisure/etc………..)

30 years ago today
Novel Design Contexts
Example: Self-Driving Transportation
Novel Design Contexts
Example: Voice Operated Home Devices

https://thewirecutter.com/reviews/google-home-voice-controlled-speaker/
As well as Ethical Challenges...

"I just don't think I'm ready for the responsibility of an AI smart speaker."
"Great design is as much about prospecting in the past as it is about inventing the future."

Bill Buxton
History

• Course Overview (Timetable) + Organisational Stuff

• What is UX/Interaction Design?

• The Story of the Mouse

• PARC

• The Desktop Metaphor

• The GUI
The Beginnings...(let’s jump back to 1943)
P 38 Lightning Cockpit (1943)

http://www.world-war-2-planes.com/lockheed-p-38.html
EDSAC computer (1949)
"I think there is a world market for maybe five computers."

Thomas Watson, chairman of IBM, 1943
Mid sized ICs

http://upload.wikimedia.org/wikipedia/commons/8/80/Three IC_circuit_chips.JPG
Punch Card

http://datentraeger-museum.de/Media/Shop/lochkarte_01.jpg
Douglas Engelbart

“When you were interacting considerably with the screen, you needed some sort of device to select objects on the screen, to tell the computer that you wanted to do something with them.”

Douglas C. Engelbart, 2003, referring to 1964
Looking back... (Discussion)

http://1.bp.blogspot.com/_jhhJghwNlgo/ST01UsQ74ol/AAAAAAAAA7k/5xDWdR-4ODY/s400/worlds+first+mouse.JPG
Looking back... (Discussion)

-reflection of the process (concept generation)
Looking back... (Discussion)

- reflection of the process (concept generation)
- construction of different prototypes (alternative design)
Looking back... (Discussion)

- reflection of the process (concept generation)
- construction of different prototypes (alternative design)
- iterative development of prototypes (prototyping and testing)
Looking back... (Discussion)

- reflection of the process (concept generation)
- construction of different prototypes (alternative design)
- iterative development of prototypes (prototyping and testing)
- tests with users to validate the approach and make decisions (usability testing)

http://www.usabilis.com/img/user-research-france/usability-testing.jpg
User-experience design

Information architecture

Communication design

User Interface engineering

Interaction design

Industrial design

Human factors

Usability engineering

Human-computer interaction

source: [3]
Stanford Research Institute (SRI), 1962.
1. **Artefacts**—physical objects designed to provide for human comfort, the manipulation of things or materials, and the manipulation of symbols.
1. **Artefacts**—physical objects designed to provide for human comfort, the manipulation of things or materials, and the manipulation of symbols.

2. **Language**—the way in which the individual classifies the picture of his world into the concepts that his mind uses to model that world, and the symbols that he attaches to those concepts and uses in consciously manipulating the concepts ("thinking").
1. **Artefacts**—physical objects designed to provide for human comfort, the manipulation of things or materials, and the manipulation of symbols.

2. **Language**—the way in which the individual classifies the picture of his world into the concepts that his mind uses to model that world, and the symbols that he attaches to those concepts and uses in consciously manipulating the concepts (“thinking”).

3. **Methodology**—the methods, procedures, and strategies with which an individual organises his goal-centered (problem-solving) activity.
1. **Artefacts**—physical objects designed to provide for human comfort, the manipulation of things or materials, and the manipulation of symbols.

2. **Language**—the way in which the individual classifies the picture of his world into the concepts that his mind uses to model that world, and the symbols that he attaches to those concepts and uses in consciously manipulating the concepts (“thinking”).

3. **Methodology**—the methods, procedures, and strategies with which an individual organises his goal-centred (problem-solving) activity.

4. **Training**—the conditioning needed by the individual to bring his skills in using augmentation means 1, 2, and 3 to the point where they are operationally effective.
The system we wish to improve can thus be visualised as comprising a trained human being, together with his artefacts, language, and methodology.
1. **Artefacts**—physical objects designed to provide for human comfort, the manipulation of things or materials, and the manipulation of symbols.

2. **Language**—the way in which the individual classifies the picture of his world into the concepts that his mind uses to model that world, and the symbols that he attaches to those concepts and uses in consciously manipulating the concepts (“thinking”).

3. **Methodology**—the methods, procedures, and strategies with which an individual organises his goal-centered (problem-solving) activity.

4. **Training**—the conditioning needed by the individual to bring his skills in using augmentation means 1, 2, and 3 to the point where they are operationally effective.
History

• Course Overview (Timetable) + Organisational Stuff
• What is Interaction Design?
• The Story of the Mouse
• PARC
• The Desktop Metaphor
• The GUI
founded 1970 by Xerox

http://upload.wikimedia.org/wikipedia/commons/e/e8/PARC-logo-color.png
founded 1970 by Xerox
The Computer for the 21st Century

Specialized elements of hardware and software, connected by wires, radio waves and infrared, will be so ubiquitous that no one will notice their presence.

by Mark Weiser

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.

Consider writing, perhaps the first information technology. The ability to represent spoken language symbolically for long-term storage freed information from the limits of individual memory. Today this technology is ubiquitous in industrialized countries. Not only do books, magazines and newspapers convey written information, but so do street signs, billboards, store signs and even graffiti. Candy wrappers are covered in writing. The constant background presence of these products of "written" technology does not require active attention, but the information to be transmitted is readily visible at a glance. It is difficult to imagine modern life otherwise.

Silicon-based information technology, in contrast, is far from being a part of the environment. More than 50 million personal computers have been sold, and the computer nonetheless remains largely in a world of its own. It is approachable only through complex interfaces that have nothing to do with the tasks for which people use computers. The state of the art is perhaps analogous to the period when scripts had to be known as much about making ink or baking dough as they did about writing.

The scenario above surrounds personal computers not just a "user interface" problem. My colleagues and I at the Xerox Palo Alto Research Center think that the idea of a "personal" computer itself is misplaced and that the erasure of laptop machines, desktops and "knowledge navigators" is only a transitional step toward achieving the real potential of information technology. Such machines cannot truly make computing an integral, invisible part of people's lives. We are therefore trying to conceive a new way of thinking about computers, one that takes into account the human world and allows the computers themselves to vanish into the background.

Such a disappearance is a fundamental consequence not of technology but of human psychology. Whenever people learn something sufficiently well, they cease to be aware of it. When you look at a street sign, for example, you absorb its information without consciously performing the act of reading. Computer scientists, economists and Nobel laureate Herbert A. Simon calls this phenomenon "complimenting," and philosopher Michael Polanyi calls it the "act of knowing." When you look at a street sign, for example, you absorb its information without consciously performing the act of reading. Computer scientists, economists and Nobel laureate Herbert A. Simon calls this phenomenon "complimenting," and philosopher Michael Polanyi calls it the "act of knowing.

The idea of integrating computers seamlessly into the world at large runs counter to a number of present-day trends. "Ubiquitous computing" in this context does not mean just computers that can be called to the board, kitchen or airport. Even the most powerful notebook computer, with access to a worldwide information network, still focuses attention on a single box. By analogy with writing, carrying a super-laptop is like owning just one very important book. Customizing this book, even writing millions of other books, does not begin to capture the real power of literacy.

Furthermore, although ubiquitous computers may use sound and video in addition to text and graphics, that does not make them "multimedia computers." Today's multimedia machine makes the computer screen into a demanding focus of attention rather than allowing it to fade into the background.

Perhaps most dramatically opposed to our vision is the notion of virtual reality, which attempts to make a world inside the computer. There's a special goggle that projects a virtual scene onto their eyes, they wear gloves or even body suits that sense their motions and gather so that they can move about and manipulate virtual objects. Although it may have its purpose in allowing people to explore realms otherwise inaccessible—the inside of cells, the surfaces of distant planets, the information web of data bases—virtual reality is only a map, not a territory. It excludes desks, offices, other people not wearing goggle and body suits, weather, trees, walls, chairs, machines and, in general, the infinite richness of the universe. Virtual reality misses one of the most important opportunities in simulating the world rather than on literally enhancing the world that already exists.

Indeed, the opposition between

Stu Card

-joined Xerox Palo Alto Research Center (PARC) in 1974
-aimed at perfecting scientific methods to integrate with creative design
-developed a process to predict the behaviour of a proposed design, using task analysis, approximation, and calculation
-proposed a partnership between designers and scientists, by providing a science that supports design.

http://www.designinginteractions.com/interviews/StuCard
Looking back...

-exploration of the design space through the integration of industrial design
Looking back...

- exploration of the design space through the integration of industrial design
- designers and engineers had to work together (interdisciplinary approach)
Looking back...

-exploration of the design space through the integration of industrial design
-designers and engineers had to work together (interdisciplinary approach)
-science served to constrain the design space
User-experience design

Industrial design

Information architecture
Communication design
User Interface engineering
Interaction design

Human factors

Usability engineering

Human-computer interaction

source: [3]
User-experience design

Industrial design

Communication design

Information architecture

Interaction design

Usability engineering

Human factors

Human-computer interaction

Usability engineering

User Interface engineering
MINIMUM Viable Product

MinMax

Crappy products

Best products to startups

Better-financed products
History

- Course Overview (Timetable) + Organisational Stuff
- What is Interaction Design?
- The Story of the Mouse
- PARC

- The Desktop Metaphor
- The GUI
Microprocessor early 1970s
Tim Mott

- collaborated remotely with Xerox Palo Alto Research Center (PARC) and Larry Tesler
- worked on a new publishing system that included a “desktop metaphor”
- invented a “user centred design process” with Larry Tesler
- later co founded Electronic Arts (EA)

http://www.designinginteractions.com/interviews/TimMott
The injured were taken to MeritCare Hospital, where they were treated. According to Sheriff Larry Costello, none were seriously hurt. The driver of the southbound vehicle the spokesperson MeritCare said

about seventeen workers attended 7 sessions
the delegate from N.D. came to Moorhead, Minn.

majored in English literature at Msum
Bachelor's Degree in Mass Communications

extra effort will be required
according to sources close to the president
will be completed in early January
the very exciting climax of the film winning
Looking back...

-spending time to understand users (design research)
Looking back...

- spending time to understand users (design research)
- designing by involving the users of the system (participatory design techniques)
Looking back...

- spending time to understand users (design research)
- designing by involving the users of the system (participatory design techniques)
- prototyping parts of the system with non functional elements (wizard-of-oz prototyping)
Looking back...

- spending time to understand users (design research)
- designing by involving the users of the system (participatory design techniques)
- prototyping parts of the system with non functional elements (wizard-of-oz prototyping)
- asking users to “walk” them through the system (think aloud method)
Looking back...

- spending time to understand users (design research)
- designing by involving the users of the system (participatory design techniques)
- prototyping parts of the system with non functional elements (wizard-of-oz prototyping)
- asking users to “walk” them through the system (think aloud method)
- designing the system using mental models user could refer to (metaphors+scenarios)
Office Schematic / Desktop Metaphor
Xerox Alto 1973

http://dl.maxIMUMPC.COM/galleries/oldpc/xerox_alto_front_full.jpg
"There is no reason anyone would want a computer in their home."

Ken Olson, president, chairman and founder of DEC, 1977
Now you can create documents with words and pictures

1981 Xerox Star Workstation
1981 Xerox Star Workstation Interface
History

- Course Overview (Timetable) + Organisational Stuff
- What is Interaction Design?
- The Story of the Mouse
- PARC
- The Desktop Metaphor
- The GUI
Larry Tesler

-involved users also in the software design process
-joined PARC in 1973
-moved to Apple in 1980
-was the core designer of Apples “Lisa” computer
-invented the “copy and paste” function

http://www.designinginteractions.com/interviews/LarryTesler
So it became a kind of contest. An unofficial and completely unacknowledged competition to see which of us was the toughest, the coolest, the hardest to get. (He was, but there were times when he didn’t know that.) "Who is smarter, you or me?" he asked me again and again: once as he left the apartment in the morning, me wrapped in a towel; once over our whiskies at the King Cole Bar in the St. Regis. And that became the most important question.
Looking back...

-brainstorming and iterative trying and testing (iterative design process)
Looking back...

- brainstorming and iterative trying and testing (iterative design process)
- constant, quick and efficient tests with users to improve the system (experience prototyping)
Looking back...

- brainstorming and iterative trying and testing (iterative design process)
- constant, quick and efficient tests with users to improve the system (experience prototyping)
- developing products for the users’ core needs (user centred design process)
Bill Atkinson

-was hired by Apple as the “Application Software Department”
-invented the “pull down” menu structure
-was the lead designer of the “Lisa” and the initial “Mac”

http://www.designinginteractions.com/interviews/BillAtkinson
Looking back...

-alternative designs in a variety (sketches & prototypes)
Looking back...

- alternative designs in a variety (sketches & prototypes)
- proposal of a participatory design approach, creating better UIs
Apple Lisa 1983

http://media.arstechnica.com/images/gui/11-Mac1.gif
Macintosh System 1.0. January 1984
WIMP
- stands for "window, icon, menu, pointing device"
- coined by Merzouga Wilberts in 1980
- is often incorrectly used as an approximate synonym of "GUI".

http://media.arstechnica.com/images/gui/11-Mac1.gif
WYSIWYG

-user interface that allows the user to view something very similar to the end result

-implies the ability to directly manipulate the layout of a document/presentation/3D model without having to type or remember names of layout commands.
October 2007: Mac OS X 10.5
over 25 years in between....
“There is an objectivity in the process of letting the user decide, the value of which is a recurring theme in this story of designing the desktop and the mouse. **Come up with an idea, build a prototype, and try it on the intended users.** That has proved, time and time again, to be the best way to create innovative solutions.”

Bill Moggridge - Designing Interactions
References (Books):

References (Papers):

Articles:
E-Mail: alexander.wiethoff@ifi.lmu.de

Website: www.medien.ifi.lmu.de