Evaluation and Testing

Andreas Butz, LMU Media Informatics
butz@lmu.de
slides partially taken from MMI class
The user as the ultima ratio...

Donald Norman
Formative vs. Summative Evaluation

Formative: what and how to (re)design

Design

Construction

Summative: how did we do?

- M. Scriven: The methodology of evaluation, 1967
Qualitative vs. Quantitative Evaluation
Analytic vs. Empirical Evaluation

Scriven, 1967: “If you want to evaluate a tool, say an axe, you might study the design of the bit, the weight distribution, the steel alloy used, the grade of hickory in the handle, etc., or you may just study the kind and speed of the cuts it makes in the hands of a good axeman.”
Empirical and Analytic Methods are Complementary (not complimentary ;-)

• Empirical evaluation produces facts which need to be interpreted
 • If the axe does not cut well, what do we have to change?
 • Analytic evaluation identifies the crucial characteristics

• Analytical evaluation produces facts which need to be interpreted
 • Why does the axe have a special-shaped handle?
 • Empirical evaluation helps to understand the context for object properties
Agenda for this class

<table>
<thead>
<tr>
<th>Intro & motivation</th>
<th>Formative</th>
<th>Summative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Cognitive walkthrough</td>
<td>Heuristic evaluation</td>
</tr>
<tr>
<td></td>
<td>GOMS + KLM</td>
<td></td>
</tr>
<tr>
<td>Empirical</td>
<td>Prototype user study</td>
<td>Controlled experiment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usability lab test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field studies</td>
</tr>
<tr>
<td>Discussion and take-home thoughts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda for this class

<table>
<thead>
<tr>
<th>Intro & motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative</td>
</tr>
<tr>
<td>Analytical</td>
</tr>
<tr>
<td>Cognitive walkthrough</td>
</tr>
<tr>
<td>Empirical</td>
</tr>
<tr>
<td>Prototype user study</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Discussion and take-home thoughts
Types of Analytical Evaluation

• Inspection-based evaluation
 – Expert review
 – Heuristic evaluation
 – Cognitive walkthrough

• Model-based evaluation
 – Evaluation according to models of how interaction works

• Different results
 – Qualitative assessment
 – Quantitative assessment
Cognitive Walkthrough

…Step by step…
…along well-defined tasks…

1. Is the **correct action** for executing the next step always clearly defined? Does the user know what to do next?

2. Is the correct action clearly **recognizable**? Does the user actually find it?

3. Does the user receive a sufficient **feedback** after executing the action, such that he can determine whether the action was executed successfully?
Goals, Operators, Methods & Selection Rules (GOMS)

- **Selection rules**
- **Methods**
- **Operators**
- **Goals**
Keystroke Level Model (KLM)

• Used times in experimental average:

 • **K** (Keystroke): Pressing a key: $t_K = 0.28s$.

 • **P** (Pointing): Pointing to a position on screen: $t_P = 1.1s$

 • **H** (Homing): Switch between keyboard and mouse: $t_H = 0.4s$

 • **M** (Mental preparation): Mental preparation of successive operation: $t_M = 1.35s$

 • **R(t)** (Response time): Response time of the systems (within t seconds, system-dependent).
KLM example

1. point to file icon P
2. press and hold mouse button B
3. drag file icon to trash can icon P
4. release mouse button B
5. point to original window P

Total time = 3P + 2B = 3*1.1 + 2*1. = 3.5 sec

ftp://www.eecs.umich.edu/people/kieras/GOMS/KLM.pdf
KLM example 2

• Which of the methods M1 or M2 is faster?

• **M1**: Switch to mouse, move mouse pointer to file icon, clicking the icon, dragging to trash icon and release, switch to keyboard

• **M2**: Switch to mouse, selecting the icon, switch to keyboard, press ‘delete’

• $t_{M1} = t_H + t_P + t_K + t_P + t_H = 0.4 + 1.1 + 0.28 + 1.1 + 0.4 = 3.28s$

• $t_{M2} = t_H + t_P + t_H + t_K = 0.4 + 1.1 + 0.4 + 0.28 = 2.18s$
KLM table

- **K** - Keystroke (.12 - 1.2 sec; .28 recommended for most users).
 - Expert typist (90 wpm): .12 sec
 - Average skilled typist (55 wpm): .20 sec
 - Average nonsecretarial typist (40 wpm): .28 sec
 - Worst typist (unfamiliar with keyboard): 1.2 sec

- **T(n)** - Type a sequence of n characters on a keyboard (n * K sec).

- **P** - Point with mouse to a target on the display (1.1 sec).
 - The actual time required can be determined from Fitts' law.
 - For typical situations, it ranges from .8 to 1.5 sec, with an average of 1.1 sec.

- **B** - Press or release mouse button (.1 sec).

- **BB** - Click and release mouse button (.2 sec).

- **H** - Home hands to keyboard or mouse (.4 sec).
Agenda for this class

<table>
<thead>
<tr>
<th></th>
<th>Intro & motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative</td>
<td>Summative</td>
</tr>
<tr>
<td>Analytical</td>
<td>Cognitive walkthrough</td>
</tr>
<tr>
<td></td>
<td>GOMS + KLM</td>
</tr>
<tr>
<td>Empirical</td>
<td>Prototype user study</td>
</tr>
<tr>
<td></td>
<td>Controlled experiment</td>
</tr>
<tr>
<td></td>
<td>Usability lab test</td>
</tr>
<tr>
<td></td>
<td>Field studies</td>
</tr>
<tr>
<td>Discussion and take-home thoughts</td>
<td></td>
</tr>
</tbody>
</table>
10 Usability Heuristics

- Visibility of system status
- Match between system and the real world
- User control and freedom
- Consistency and standards
- Error prevention
- Recognition rather than recall
- Flexibility and efficiency of use
- Aesthetic and minimalist design
- Help users recognize, diagnose, and recover from errors
- Help and documentation
Detailed Checklist Example

http://www.stcsig.org/usability/topics/articles/he-checklist.html

Heuristic Evaluation - A System Checklist

1. Visibility of System Status

The system should always keep user informed about what is going on, through appropriate feedback within reasonable time.

<table>
<thead>
<tr>
<th>#</th>
<th>Review Checklist</th>
<th>Yes No N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Does every display begin with a title or header that describes screen contents?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Is there a consistent icon design scheme and stylistic treatment across the system?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Is a single, selected icon clearly visible when surrounded by unselected icons?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Do menu instructions, prompts, and error messages appear in the same place(s) on each menu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>In multipage data entry screens, is each page labeled to show its relation to others?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>If overtype and insert mode are both available, is there a visible indication of which one the user is in?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>If pop-up windows are used to display error messages, do they allow the user to see the field in error?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>Is there some form of system feedback for every operator action?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>After the user completes an action (or group of actions), does the feedback indicate that the next group of actions can be started?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>Is there visual feedback in menus or dialog boxes about which choices are selectable?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>Is there visual feedback in menus or dialog boxes about which choice the cursor is on now?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of Evaluators

http://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/

Jakob Nielsen
Agenda for this class

<table>
<thead>
<tr>
<th>Intro & motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative</td>
</tr>
<tr>
<td>Analytical</td>
</tr>
<tr>
<td>Cognitive walkthrough</td>
</tr>
<tr>
<td>GOMS + KLM</td>
</tr>
<tr>
<td>Empirical</td>
</tr>
<tr>
<td>Prototype user study</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Discussion and take-home thoughts
Quality Properties of Empirical Methods

• Objectivity

• Reproducability

• Validity
 – internal
 – external

• Relevance
Variables and Values

- Nominal
- Ordinal
- Cardinal

Experiment

Independent

V1

V2

http://www.bundesliga.de/

http://www.gebr-clasen.de/-g400/weltkarte_KB.png

http://www.kreativrad.de/img/parts/fahrrad-massanfertigung-koerpergroesse.png

http://www.weltkarte.de/
Subjects

- Age
- Gender
- Previous knowledge
- Handedness
- Vision
- Education
- Nationality …
Observation Study (Example)

- One independent variable: Participation in tutorials (Yes / No)
 - Assuming participation is voluntary
- One dependent variable: Achieved grade in test
- 108 subjects, 54 “yes”, 54 “no” (to participation question)
- Measurement shows: Grade positively **correlated** with tutorial participation
- Beware of **confounding variables**!
Controlled Experiment

- One independent variable: Participation in tutorials (Yes / No)
 - assigned randomly to subjects !!!
- One dependent variable: Achieved grade in test
- 108 subjects, 54 “participating” condition, 54 “not-participating” condition
- Measurement: Grade positively correlated with participation
- Causal relationship established: Participation in tutorials leads to better grade
Experiment Design

<table>
<thead>
<tr>
<th></th>
<th>Int. Design</th>
<th>Analysis</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Condition 1</td>
<td>Condition 2</td>
<td>Condition 3</td>
</tr>
<tr>
<td>No</td>
<td>Condition 4</td>
<td>Condition 5</td>
<td>Condition 6</td>
</tr>
</tbody>
</table>

- 2 Variables with 2 resp. 3 values: \(2 \times 3 = 6\) Conditions
- **within-subjects**: everybody does everything
- **between-groups**: groups, each group does one condition
- Vary the order to avoid **learning** and **fatigue effects**
 - Randomisation
 - Permutation
 - Latin square

<table>
<thead>
<tr>
<th></th>
<th>Cond. 6</th>
<th>Cond. 1</th>
<th>Cond. 5</th>
<th>Cond. 2</th>
<th>Cond. 4</th>
<th>Cond. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. 5</td>
<td>Cond. 6</td>
<td>Cond. 4</td>
<td>Cond. 1</td>
<td>Cond. 3</td>
<td>Cond. 2</td>
<td></td>
</tr>
<tr>
<td>Cond. 2</td>
<td>Cond. 3</td>
<td>Cond. 1</td>
<td>Cond. 4</td>
<td>Cond. 6</td>
<td>Cond. 5</td>
<td></td>
</tr>
<tr>
<td>Cond. 1</td>
<td>Cond. 2</td>
<td>Cond. 6</td>
<td>Cond. 3</td>
<td>Cond. 5</td>
<td>Cond. 4</td>
<td></td>
</tr>
<tr>
<td>Cond. 4</td>
<td>Cond. 5</td>
<td>Cond. 3</td>
<td>Cond. 6</td>
<td>Cond. 2</td>
<td>Cond. 1</td>
<td></td>
</tr>
<tr>
<td>Cond. 3</td>
<td>Cond. 4</td>
<td>Cond. 2</td>
<td>Cond. 5</td>
<td>Cond. 1</td>
<td>Cond. 6</td>
<td></td>
</tr>
</tbody>
</table>
How do you rate the class?

0% 20% 40% 60% 80% 100%

HCI1

10 44 29 8 17

Excellent 1 2 3 4 5 Very bad

Average
Descriptive Statistics

- nominal data: **mode** \((2, 4, 5, 5, 5, 5, 5) = 5\)
- ordinal data: **median** \((2, 4, 5, 5, 5, 5, 5) = 5\)
- cardinal data: **mean** \((2, 4, 5, 5, 5, 5, 5) = \frac{31}{7} = 4.42\)
- standard deviation:
 - median(1, 2, 3, 4, 5) = median(3, 3, 3, 3, 3) = 3
 - mean(1, 2, 3, 4, 5) = mean(3, 3, 3, 3, 3) = 3
 - \(\sigma(1, 2, 3, 4, 5) = 1.58\)
 - \(\sigma(3, 3, 3, 3, 3) = 0.0\)

\[
\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]
Hypotheses and Significance

• H: Tutorial participants achieve better grades in test.
• H₀: Tutorial participants and non-participants achieve in average the same grades in test.
• Effect size = difference of mean values (unknown in advance)

• Problem: Effect size is not predictable, therefore it is difficult to formulate H in a more precise way

• Trick: Instead of proving H, dis-prove H₀. Then H is implicitly proven – independent of effect size.
Significance Tests (Example t-test)

• Input: 2 rows of data

• Output: Probability value p between 0 and 1
 – Probability for both rows having in reality the same mean value

• Significance level:
 – Often 0.05 (= 5%)
 – Other values possible: 0.01, 0.001

• If $p < 0.05$: “significant difference” between data rows.

• Different tests für various experiment designs
Field Study vs Lab Study

- External Validity
- Internal Validity
- Effort

Source: www.xperienceconsulting.com
Field Studies

• Normal activities are studied in normal environment

• Advantages:
 – Can reveal results on user acceptance
 – Allows longitudinal studies, including learning and adaptation

• Problems:
 – In general very expensive
 – Highly reliable product (prototype, mockup) needed
 – How to get observations?
 • Collecting usage data
 • Collecting incident stories
 • On-line feedback
 • Retrospective interviews, questionnaires
Usability Laboratory

• Specifically constructed testing room
 – Instrumented with data collection devices (e.g. microphones, cameras)

• Separate observation room
 – Usually connected to testing room by one-way mirror and audio system
 – Data recording and analysis

• Test users perform prepared scenarios
 – “Think aloud” technique

• Problem:
 – Very artificial setting
 – No communication

Source: www.xperienceconsulting.com
Poor Man‘s Usability Lab

• Goal: Integrate multiple views
 – Capture screen with pointer
 – View of the person interacting with the system
 – View of the environment

• Setup:
 – Computer for the test user,
 • run application to test
 • export the screen (e.g., via VNC)
 – Computer for the observer
 • See the screen of the subject
 • Attach 2 web cams (face and entire user)
 • Display them on the observer‘s screen
 • Have an editor for the observer‘s notes
 • Capture this screen (e.g. QT, Camtasia)

• Discuss with the user afterwards
 – Why did you do this?
 – What did you try here?
 –
Video protocol

- Integrate multiple views
 - Capture screen with pointer
 - View of the person interacting with the system
 - View of the environment

- Poor man’s usability lab
 - Computer for the test user,
 - run application to test
 - export the screen (e.g. VNC)
 - Computer for the observer
 - See the screen from the subject
 - Attach 2 webcams and display them on the screen
 - Have an editor for observer notes
 - Capture this screen (e.g. camtasia)

- Discuss with the user afterwards
 - Why did you do this?
 - What did you try here?
 - ...
Longitudinal and Diary Studies

WHAT I DID...

CHECK OFF A MONEY MANAGEMENT ACTIVITY:
- Logged onto a bank website
- Used a mobile banking application
- Logged onto a money management website [e.g., Mint.com]
- Went to an ATM
- Went into a bank
- Other:

Where were you?

What were you trying to do?

What led you to want to do that? Why were you trying to do that?

Did everything happen as you expected? Any problems?
Agenda for this class

<table>
<thead>
<tr>
<th>Intro & motivation</th>
<th>Formative</th>
<th>Summative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Cognitive walkthrough</td>
<td>Heuristic evaluation</td>
</tr>
<tr>
<td></td>
<td>GOMS + KLM</td>
<td></td>
</tr>
<tr>
<td>Empirical</td>
<td>Prototype user study</td>
<td>Controlled experiment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usability lab test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field studies</td>
</tr>
</tbody>
</table>

Discussion and take-home thoughts
Paper Prototype Study

https://www.youtube.com/watch?v=9wQkLthhHKA
Agenda for this class

<table>
<thead>
<tr>
<th>Intro & motivation</th>
<th>Formative</th>
<th>Summative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Cognitive walkthrough</td>
<td>Heuristic evaluation</td>
</tr>
<tr>
<td></td>
<td>GOMS + KLM</td>
<td></td>
</tr>
<tr>
<td>Empirical</td>
<td>Prototype user study</td>
<td>Controlled experiment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usability lab test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field studies</td>
</tr>
</tbody>
</table>

Discussion and take-home thoughts
References

• Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale: Human Computer Interaction (third edition), Prentice Hall 2003
• Discount Usability Engineering http://www.useit.com/papers/guerrilla_hci.html
• Heuristic Evaluation http://www.useit.com/papers/heuristic/

• Further Literature
 – Andy Field & Graham Hole: How to design and report experiments, Sage
 – Jürgen Bortz: Statistik für Sozialwissenschaftler, Springer
 – Christel Weiß: Basiswissen Medizinische Statistik, Springer
 – Lothar Sachs, Jürgen Hedderich: Angewandte Statistik, Springer
 – various books by Edward R. Tufte

 – video on next slide by Eric Shaffer, Human Factors Inc. http://www.youtube.com/watch?v=bminUlAu47Q
Intuitive Interfaces?

• Given: old style water faucet
 – 2 valves, 1 outlet
 – Cylindrical, next to each other
 – Left warm, right cold

• Question: In which direction does each valve close?

• Homework: find such faucets, determine which are „intuitive“ and why (not)