
INSTITUT FÜR INFORMATIK
MEDIENINFORMATIK
PROF. DR. ANDREAS BUTZ, CHANGKUN OU, DAVID ENGLMEIER
COMPUTERGRAFIK 1, SOMMERSEMESTER 2020

Assignment 4 - Camera

This assignment practices topics related to camera, as one of the most important components in
computer graphics. For your in-depth understanding of this area, it also covers a few related concepts
that might new to you. You should use any resources (e.g., books, search engines, calculators, and
etc.) that can help you accomplish it.

There are code skeletons for programming tasks, please check our GitHub repository1.

Task 1: View Transformation

Suppose we are using a right-handed coordinate system. As shown in Figure 1, a camera at position
p = (p1, p2, p3, 1)>, looking in the direction l = (l1, l2, l3, 0)>, with an up-vector u = (u1, u2, u3, 0)> is
given.

p = (p1, p2, p3, 1)⊤

u = (u1, u2, u3, 0)⊤

l = (l1, l2, l3, 0)⊤

Figure 1: Camera view transformation

a) Show the translation matrix Tview that transforms the position of the camera to the origin.

b) After the translation, show the rotation matrix Rview that transforms the camera look-at to the
direction (0, 0,−1, 0)> and up-vector to the direction (0, 1, 0, 0)>.

Include your answers in a Markdown file called “task01.md”.

Task 2: Projection Transformation

Let’s continue along with Task 1. After the view transformation, the camera is now at the origin, the
look-at is l = (0, 0,−1, 0)> and the up-vector is u = (0, 1, 0, 0)>. Assume, a point x = (x, y, z, 1)>

is inside the view frustum of the given camera with near plane z = n, n < 0 and far plane at
z = f, f < n.

a) What are the projected coordinates for x on the x-y plane in orthographic projection?

1https://github.com/mimuc/cg1-ss20

Computer Graphics, Summer semester 2020, LMU Munich Page 1 of 4

https://github.com/mimuc/cg1-ss20

Assignment 4 Camera

b) Assume, the orthographic view frustum is [l, r] × [b, t] × [f, n] where l, r are left and right planes,
and b, t are bottom and top planes. Deduce the projection matrix Tortho that transforms the
given view frustum [l, r] × [b, t] × [f, n] to a cube [−1, 1]3.

Now, let’s switch from orthographic to a perspective camera. The perspective projection can be
seen as a combination transformation of two transformations: a) an orthographic transformation,
and b) perspective-to-orthographic transformation. As illustrated in Figure 2, the view frustum of a
perspective camera can be squashed as a cube-like orthographic view frustum.

Tpersp!ortho

<latexit sha1_base64="yDRPxYeUoU60B6XXkgo/gbbIN+4=">AAACEHicbVC7TsMwFHV4lvIKMLJEVAimKkFIwFaJhQkVqS+piSLHdVurThzZN5QS8gks7HwFCwMIsTKysfEpuI8BWo5k6eicc3V9TxBzpsC2v4y5+YXFpeXcSn51bX1j09zarimRSEKrRHAhGwFWlLOIVoEBp41YUhwGnNaD3vnQr19TqZiIKjCIqRfiTsTajGDQkm8eVPzUBXoDaaxTceZK1ukCllL0x7KQ0BVZ5psFu2iPYM0SZ0IKJafPb+8ev8u++em2BElCGgHhWKmmY8fgpVgCI5xmeTdRNMakhzu0qWmEQ6q8dHRQZu1rpWW1hdQvAmuk/p5IcajUIAx0MsTQVdPeUPzPaybQPvVSFsUJ0IiMF7UTboGwhu1YLSYpAT7QBBPJ9F8t0sUSE9Dt5HUJzvTJs6R2VHSOi2dXuo1LNEYO7aI9dIgcdIJK6AKVURURdI+e0At6NR6MZ+PNeB9H54zJzA76A+PjBwbOouQ=</latexit>

Tortho

<latexit sha1_base64="pFlW5aSPDhACfcnRJh1970kOEng=">AAAB+XicbVDLSsNAFJ34rPUVdekmtAiuSiKCuqu4cSUV+oK2hMl00g6dzISZm2IJ+QQ/QHDjQhG3/ok78SP8BaePhbYeuHA4517uvSeIOdPgup/W0vLK6tp6biO/ubW9s2vv7de1TBShNSK5VM0Aa8qZoDVgwGkzVhRHAaeNYHA19htDqjSTogqjmHYi3BMsZASDkXzbrvppG+gdpFJBX2aZbxfdkjuBs0i8GSmWCw/335eDr4pvf7S7kiQRFUA41rrluTF0UqyAEU6zfDvRNMZkgHu0ZajAEdWddHJ55hwZpeuEUpkS4EzU3xMpjrQeRYHpjDD09bw3Fv/zWgmE552UiTgBKsh0UZhwB6QzjsHpMkUJ8JEhmChmbnVIHytMwISVNyF48y8vkvpJyTstXdyaNG7QFDl0iAroGHnoDJXRNaqgGiJoiB7RM3qxUuvJerXepq1L1mzmAP2B9f4D7DmYTQ==</latexit>

Figure 2: Perspective view frustum to othorgraphic view frustum

c) Let the field of view be θ and the aspect ratio λ. Deduce the transformation matrix Tpersp→ortho
that transforms the given perspective view frustum to a orthographic view frustum.

d) Use Tortho you derived from b) and calculate the combined transformation TorthoTpersp→ortho.

Include your answers in a Markdown file called “task02.md”.

Task 3: Viewport Transformation

Let’s continue along with Task 2. After the projection transformation, your view frustum is trans-
formed to a cube [−1, 1]3. Show the transformation matrix Tviewport that projects all points from the
cube to x-y plane in a rectangle [0, w] × [0, h] where w, h > 0, as shown in Figure 3.

[�1, 1]3

<latexit sha1_base64="SoSeZNTTnmZRpMEid2+mlA7/rYA=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBhPBg4bdKKi3gBdPEsE8YLOG2clsMmR2ZpmZFcKSz/DiQRGvfo03/8bJ46DRgoaiqpvurjDhTBvX/XJyS8srq2v59cLG5tb2TnF3r6llqghtEMmlaodYU84EbRhmOG0niuI45LQVDq8nfuuRKs2kuDejhAYx7gsWMYKNlfyyf+qdIC94OCt3iyW34k6B/hJvTkowR71b/Oz0JEljKgzhWGvfcxMTZFgZRjgdFzqppgkmQ9ynvqUCx1QH2fTkMTqySg9FUtkSBk3VnxMZjrUexaHtjLEZ6EVvIv7n+amJLoOMiSQ1VJDZoijlyEg0+R/1mKLE8JElmChmb0VkgBUmxqZUsCF4iy//Jc1qxTuvXN1VS7XbeRx5OIBDOAYPLqAGN1CHBhCQ8AQv8OoY59l5c95nrTlnPrMPv+B8fANgPo9q</latexit>

[�1, 1]2

<latexit sha1_base64="YvFZk0ScK36ASCqR0949axyc80w=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBhPBg4bdIKi3gBdPEsE8YLOG2clsMmR2ZpnpFcKSz/DiQRGvfo03/8bJ46CJBQ1FVTfdXWEiuAHX/XZyK6tr6xv5zcLW9s7uXnH/oGlUqilrUCWUbofEMMElawAHwdqJZiQOBWuFw5uJ33pi2nAlH2CUsCAmfckjTglYyS/7594Z9oLHarlbLLkVdwq8TLw5KaE56t3iV6enaBozCVQQY3zPTSDIiAZOBRsXOqlhCaFD0me+pZLEzATZ9OQxPrFKD0dK25KAp+rviYzExozi0HbGBAZm0ZuI/3l+CtFVkHGZpMAknS2KUoFB4cn/uMc1oyBGlhCqub0V0wHRhIJNqWBD8BZfXibNasW7qFzfV0u1u3kceXSEjtEp8tAlqqFbVEcNRJFCz+gVvTngvDjvzsesNefMZw7RHzifP165j2k=</latexit>

[0, w] ⇥ [0, h]

<latexit sha1_base64="PRJUgAgZaPyk2c+sY1UEH6ezvYk=">AAAB/XicbZDLSsNAFIYn9VbrLV52bgZbwYWUpAjqruDGlVSwF0hDmUwn7dDJhZkTpYbiq7hxoYhb38Odb+OkzUJbfxj4+M85nDO/FwuuwLK+jcLS8srqWnG9tLG5tb1j7u61VJRIypo0EpHseEQxwUPWBA6CdWLJSOAJ1vZGV1m9fc+k4lF4B+OYuQEZhNznlIC2euZBxbFO8YPbBR4wlfHQrfTMslW1psKLYOdQRrkaPfOr249oErAQqCBKObYVg5sSCZwKNil1E8ViQkdkwByNIdG73HR6/QQfa6eP/UjqFwKeur8nUhIoNQ483RkQGKr5Wmb+V3MS8C/clIdxAiyks0V+IjBEOIsC97lkFMRYA6GS61sxHRJJKOjASjoEe/7Li9CqVe2z6uVtrVy/yeMookN0hE6Qjc5RHV2jBmoiih7RM3pFb8aT8WK8Gx+z1oKRz+yjPzI+fwDTI5OW</latexit>

Figure 3: Project cube view frustum to 2D plane

Include your answers in a Markdown file called “task03.md”.

Computer Graphics, Summer semester 2020, LMU Munich Page 2 of 4

Assignment 4 Camera

Task 4: Hitchcock Zoom

In photography, Hitchcock zoom, also known as dolly zoom2, is an in-camera effect that appears to
undermine normal visual perception. This technique was invented by Alfred Hitchcock while filming
Vertigo3. There is a video for you to learn more about how Hitchcock zoom applied in industrial
filming4. This task is going to walk you through the implementation of the Hitchcock zoom effect in
three.js.

From the code skeleton, your initial scene is a bunny in the Sponza5, as shown in Figure 4a. As always,
there is a demo6 for your to interact with it.

(a) The initial scene from code
skeleton.

(b) A possible projection when
applying Hitchcock zoom.

(c) Another possible projec-
tion when applying Hitchcock
zoom.

Figure 4: Hitchcock zoom: the background the bunny suddenly resizes and overwhelms the foreground.

a) Read the links (Wikipedia and YouTube) provided in the previous description and try to under-
stand how the Hitchcock zoom works. What are the two camera-related factors of the Hitchcock
zoom?

b) In the code skeleton, you can find three files: main.js, renderer.js, and dolly.js. Look for
// TODO: and implement the Hitchcock zoom in dolly.js.

c) What do you need for updating the camera projection in three.js?

d) Where is the center of the perspective projection in three.js?

Answer text questions in the README.md of the given code skeleton, then include your answers and
implementation in a folder called “task04”. Exclude the installed dependencies (folder node_modules)
in your submission.

2https://en.wikipedia.org/wiki/Dolly_zoom
3https://en.wikipedia.org/wiki/Vertigo_(film)
4https://www.youtube.com/watch?v=u5JBlwlnJX0
5https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Sponza
6http://www.medien.ifi.lmu.de/lehre/ss20/cg1/demo/4-proj/hitchcock/

Computer Graphics, Summer semester 2020, LMU Munich Page 3 of 4

https://en.wikipedia.org/wiki/Dolly_zoom
https://en.wikipedia.org/wiki/Vertigo_(film)
https://www.youtube.com/watch?v=u5JBlwlnJX0
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Sponza
http://www.medien.ifi.lmu.de/lehre/ss20/cg1/demo/4-proj/hitchcock/

Assignment 4 Camera

Submission

• Participation in the exercises and submission of the weekly exercise sheets is voluntary and not
a prerequisite for participation in the exam. However, participation in an exercise is a good
preparation for the exam (the content is the content of the lecture and the exercise).

• For non-coding tasks, write your answers in a Markdown file. Markdown is a simple mark-up
language that can be learned within a minute. A recommended the Markdown GUI parser is
typora (https://typora.io/), it supports parsing embedded formula in a Markdown file. You
can find the syntax reference in its Help menu.

• Please submit your solution as a ZIP file via Uni2Work (https://uni2work.ifi.lmu.de/)
before the deadline. We do not accept group submissions.

• Your solution will be corrected before the discussion. Comment your code properly, organize
the code well, and make sure your submission is clear because this helps us to provide the best
possible feedback.

• If we discover cheating behavior or any kind of fraud in solving the assignments, you will be
withdrawn for the entire course! If that happens, you can only rejoin the course next year.

• If you have any questions, please discuss them with your fellow students first. If the problem
cannot be resolved, please contact your tutorial tutor or discuss it in our Slack channel.

Computer Graphics, Summer semester 2020, LMU Munich Page 4 of 4

https://typora.io/
https://uni2work.ifi.lmu.de/

