LUDWIG- INSTITUT FUR INFORMATIK 0%
N

MAXIMILIANS- | | MEDIENINFORMATIK A\LFAST |
UNIVERSITAT PROF. DR. ANDREAS BUTZ, CHANGKUN OU, DAVID ENGLMEIER AT 7
I

MUNCHEN COMPUTERGRAFIK 1, SOMMERSEMESTER 2020 ERIx

Assignment 7 - lllumination

In this assignment you are going to practice illumination in computer graphics, including ray tracing
and path tracing. For a deeper understanding, it also covers a few related topics that were men-
tioned but not discussed in detail in the lecture. You should use any resources (e.g., books, search
engines, calculators, and etc.) that may help you accomplish it. Code skeletons can be found in
github.com/mimuc/cgl-ss20.

Task 1: Whitted-style Ray Tracing

Whitted-style ray tracing is considered as one of the first breakthroughs regarding photorealistic
rendering. Applying a model of inverse light transport the method is tracing the incoming light from
the camera’s viewport. The original scene from Whitted’s paper is similar to Figure 1 however, it is
a little more detailed. An interactive demo can be found online .

Instead of implementing Whitted-style ray tracing, your last task in the field of rasterization is to fake
the classic scene originally created by the Whitted-style ray tracing.

Figure 1: A fake Whitted-style ray tracing scene done with the rasterization pipeline.

a) Look for // TODO: in main.js and reproduce the scene in the constructor() and update()
function.

b) What light effects are missing or appear wrong in the reproduced scene (Figure 1)? Name three.

However, the Whitted-style ray tracing is still considered wrong and is not compatible with the
rendering equation.

"https://www.medien.ifi.lmu.de/lehre/ss20/cgl/demo/7-illumination/whitted/

Computer Graphics, Summer semester 2020, LMU Munich Page 1 of 6

https://github.com/mimuc/cg1-ss20
https://www.medien.ifi.lmu.de/lehre/ss20/cg1/demo/7-illumination/whitted/

Assignment 7 1llumination

c) What are the effects that cannot be implemented with Whitted-style ray tracing? Name two.

d) In one sentence: why is Whitted-style ray tracing not compatible with the rendering equation?

Answer text questions in the README.md that comes with the provided code skeleton, then include
your answers and implementation in a folder called “task01”. Fxzclude the installed dependencies
(folder node_modules) in your submission.

Task 2: Monte Carlo Ray Tracing (a.k.a. Path Tracing)

In the lecture, you learned how to calculate the Monte Carlo integration (MCI). For a definite integral
/ f f(z)dx, with the random variable X} ~ p(x), the Monte Carlo estimator is:

1 i f(Xk)
N = p(Xy)
If X}, are unifrom random variables, then X} ~ p(x) = ﬁ, and the Monte Carlo estimator for uniform
random variables becomes: N
b—a
N > F(Xp)
k=1

Therefore, with Monte Carlo integration, we can write the rendering equation
Lo(z,w,) = Le(x,w,) + /Q Li(z,w;) fr(z, w;, w,) cos §; dw;
in a discrete form.

]. N LZ , Wy r , Wi ke, Wo 9@
Lo(z,wo) = Le(z,w,) + — Z (@, Wi k) fr (2, Wi g, Wo k) €08 0

N = p(wik)

a) Recall the BRDF of the lambertian material from Assignment 6, what is the rendering equation
using Monte Carlo integration on a Lambertian surface?

b) Calculate p(w;) for uniform sampling on a hemisphere (hint: consider spherical coordinates).

The rendering equation integrates all possible directions below a hemisphere from a shading point.
The integration can be separated into two parts: direct illumination and indirect illumination. The
shading point affected from direct illumination receives its radiance directly from the light source.

c) Let our light source be an rectagular area light with area S, rewrite the rendering equation that
it integrates the radiance and recieves from the light source, i.e. replace the infinitesimal dw by
ds where s is a unit direction from light source to the shading point.

Computer Graphics, Summer semester 2020, LMU Munich Page 2 of 6

Assignment 7 1llumination

Now, for the last task of this course let’s implement a simple path tracer that can render the classic
Cornell Box, as shown in Figures 2 and 3. An interactive demo can be found online 2.

To achieve this goal and by utilizing what you have practiced over the course (three.js with cus-
tomized GLSL shaders), we need to construct the code skeleton for this task in a slightly different way
than we did it for the other tasks.

In the previous tasks, the three. js part serves as a renderer for constructing a desired scene graph
and eventually uses WebGL APIs to rasterize what you described for the scene graph. However, the

’https://www.medien.ifi.lmu.de/lehre/ss20/cgl/demo/7-illumination/pathtracer/

(a) Direct illumination with no (b) One bounce global illumina- (¢) Two-bounce global illumina-
light bounces. tion. tion.

Figure 2: The Cornell Box is rendered by path tracing where the Monte Carlo integration is calculated
basd on the average of 20 random samples per pizel (20 spp).

(a) MCIT calculated based on the (b) MCI calculated based on the (¢) MCI calculated based on the
average radiance of 1 spp. average radiance of 4 spp. average radiance of 16 spp.

Figure 3: The Cornell Box is rendered by path tracing with two light bounces.

Computer Graphics, Summer semester 2020, LMU Munich Page 3 of 6

https://www.medien.ifi.lmu.de/lehre/ss20/cg1/demo/7-illumination/pathtracer/

10

11

12

13

14

16

17

18

Assignment 7 1llumination

rendering pipeline under paradigm of ray tracing is different from rasterization. Thus, in the code
skeleton, we use three. js to create a plane geometry, by using an orthographic projection we make
this plane our whole viewport.

As said, with this setting, the plane becomes our viewport, and its material becomes the pixels we are
going to program. Therefore, we can fully concentrate on our customized fragment shader to create
everything we want to render. Subsequently, for each fragment, we compute the color of a ray in the
fragment shader using path tracing.

To make the rendering more interactive, the code skeleton takes into account the number of light
bounces and samples per pizel (spp) that we are going to use for the ray bounces while the spp
determine the Monte Carlo integration. One can change the values interactively to see how the path
tracing is influenced by these two parameters. For instance, Figure 2a shows the direct illumination of
the Cornell Box where the light has no bounces, Figure 2b shows one bounce global illumination and
Figure 2c¢ shows two bounce global illumination; Figure 3a shows the Monte Carlo integration with 1
spp, Figure 3b with 4 spp and Figure 3c with 16 spp.

d) Use the rendering equation you derived from a), b) and c) and implement Monte Carlo ray
tracing in the function vec3 shade(in ray r) in cornellbox.fs.glsl (you don’t need to
consider indirect illumination for this implementation).

Hint:

Your implementation should not be longer than 30 lines of code. A pesudocode to better understand
how the path tracer works:

shade (wo) {
Li =0
Lo =0
for i = 0; i < bounces; i++ {
if wo not hit the world {
return Lo

if wo hit light source {
return Lo

Li = Li * hitted material color
if light is not blocked in the middle {
Lo += radiance at hit position // use the rendering equation

wo = randomly sample one direction

}

return Lo

e) What can you conclude when you increase the number of bounces? Will the scene become pure
white with infinite light bounces? If yes/no, why? Justify your answer.

Computer Graphics, Summer semester 2020, LMU Munich Page 4 of 6

Assignment 7 1llumination

f) What can you conclude when you increase the samples per pixel? How much samples per pixel
do we need eventually?

Answer text questions in the README.md that comes with the provided code skeleton, then include
your answers and implementation in a folder called “task02”. Fxzclude the installed dependencies
(folder node_modules) in your submission.

Computer Graphics, Summer semester 2020, LMU Munich Page 5 of 6

Assignment 7 1llumination

Submission

o Participation in the exercises and submission of the weekly exercise sheets is voluntary and not
a prerequisite for participation in the exam. However, participation in an exercise is a good
preparation for the exam (the content is the content of the lecture and the exercise).

e For non-coding tasks, write your answers in a Markdown file. Markdown is a simple mark-up
language that can be learned within a minute. A recommended the Markdown GUI parser is
typora (https://typora.io/), it supports parsing embedded formula in a Markdown file. You
can find the syntax reference in its Help menu.

» Please submit your solution as a ZIP file via Uni2Work (https://uni2work.ifi.lmu.de/)
before the deadline. We do not accept group submissions.

e Your solution will be corrected before the discussion. Comment your code properly, organize
the code well, and make sure your submission is clear because this helps us to provide the best
possible feedback.

o If we discover cheating behavior or any kind of fraud in solving the assignments, you will be
withdrawn for the entire course! If that happens, you can only rejoin the course next year.

e If you have any questions, please discuss them with your fellow students first. If the problem
cannot be resolved, please contact your tutorial tutor or discuss it in our Slack channel.

Computer Graphics, Summer semester 2020, LMU Munich Page 6 of 6

https://typora.io/
https://uni2work.ifi.lmu.de/

