Computer Graphics 1

Ludwig-Maximilians-Universität München
Summer semester 2020

Prof. Dr.-Ing. Andreas Butz
lecture additions by Dr. Michael Krone, Univ. Stuttgart

http://www.wikiwand.com/
Chapter 1 – Introduction, Motivation, Basics

• About this Class: Organization
• Tutorials
• What is Computer Graphics?
• Why Should I Learn about Computer Graphics?
• Very Brief History of Computer Graphics
• Math Recap: What We Need to Survive…
About this class: Organization

• Mainly Bachelor Medieninformatik, 4th semester
 • “Vertiefende Themen” in Bachelor Informatik, also Bachelor "Kunst und Multimedia"
 • All others, please check how this course can be credited
• Tuesday, 10:00 – 12:00, Schellingstr. 3, Room S001
 • Lecture (2 hours) + tutorials (2 hours)
• Tuesday, 10:00 - 12:00, online in Zoom
 • Video available 1 wk before, zoom meetings for Q&A and for tutorials

• Asking questions during the zoom meeting is strongly encouraged!
• Web page: http://www.medien.ifi.lmu.de/lehre/ss20/cg1/
 • PDF of the slides: a week before class
 • Screencast video from 2019: a week before class
 • Access to course material: user “cg1”, password “cg1_sose2020”
Chapter 1 – Introduction, Motivation, Basics

• About this Class: Organization
• Tutorials
• What is Computer Graphics?
• Why Should I Learn about Computer Graphics?
• Very Brief History of Computer Graphics
• Math Recap: What We Need to Survive…
Chapter 1 – Introduction, Motivation, Basics

• About this Class: Organization
• Tutorials
• What is Computer Graphics?
• Why Should I Learn about Computer Graphics?
• Very Brief History of Computer Graphics
• Math Recap: What We Need to Survive…
What is Computer Graphics?

• Generation and manipulation of images with computers
• Research areas:

- modeling
- animation
- imaging
- visualization
- rendering
What is Computer Graphics?

- **Modeling**
- **Acquisition**
- **Visualization**
- **Image synthesis**
- **Simulation**
Evolution of Computer Graphics in Video Games

• Obviously, CG development was partially motivated by a ludic drive...

Tennis for Two, 1958
William Higinbotham
Analog computer and oscillograph

Spacewar!, 1961
MIT Students
DEC PDP-1
Evolution of Computer Graphics in Video Games

 1998

 1998

2010
When will games reach this degree of realism?
…they already have!
3D Geometry: Description of the shape of objects

• Depiction of the surface
 • Usually via triangles
 • Tessellation (amount/granularity of triangles)

• Free form surfaces
 • Developed independently by Pierre Bézier (Renault) and Paul de Casteljau (Citroën) for the computer-aided construction of car bodies
3D Models

• How are 3D models (triangle meshes) created?
 • Straightforward solution: Explicitly in a modeling tool like Autodesk Maya, Blender etc.
Procedural Models – Example: Rocks

• Generate randomly distributed points and from them, coarse meshes
• Subdivide the triangles and randomly displace their vertices
Detailed Geometry

- 3D Scanning: Acquisition of surfaces with a laser

www.graphics.stanford.edu/projects/mich/
What else do we need?

• Material properties (reflectance, opacity etc.)
• Shading, lighting (e.g., photorealistic or illustrative)
• Animation
• ...

© University of Utah
Chapter 1 – Introduction, Motivation, Basics

• About this Class: Organization
• Tutorials
• What is Computer Graphics?
• Why Should I Learn about Computer Graphics?
• Very Brief History of Computer Graphics
• Math Recap: What We Need to Survive…
Why should I learn about Computer Graphics?

- Basis for graphical digital media
 - In the heart of your study and many future jobs!

- Basis for recent CG movies and SFX
 - Practically no more movies without it!

- Basis for scientific visualization
 - Graphical depiction of scientific data

- Basis for most computer games
 - Market bigger than the film industry

Image source: https://www.dirtgame.com/
Image source: http://www.ks.uiuc.edu/
Image source: © Marvel Studios/Walt Disney Studios Motion Pictures

Image source: https://www.dirtgame.com/
2D vs. 3D graphics vs. Pixels (see „Digitale Medien“)

• Pixel-based graphics
 • Given resolution, describe color at each pixel
 • Basis for digital photography
 • Whole research area of image processing

• 2D graphics (aka vector graphics)
 • Uses 2D lines and areas to describe an image
 • 2D drawing programs: Inkscape, Adobe Illustrator, MS PowerPoint, ...

• 3D graphics
 • Describe 3D objects of a scene
 • Compute what light would do to these objects
 • Compute pixel image from a virtual camera
...so: 3D content on a 2D screen, huh?

- General problem: current screens are 2D
 - For true 3D perception, we need 2 images for the 2 eyes (stereo)
 - This is technically still difficult (need glasses, e.g., 3D movies in cinema or on modern TV)
 - Research area of volumetric or (auto)stereoscopic displays
 - Alternative: use head-mounted display (Oculus Rift, HTC Vive, Google Cardboard...)

- Content is 3D, display is 2D: what problems does this bring?
The 3D rendering pipeline (our version for this class)

3D models in model coordinates → 3D models in world coordinates → 2D polygons in camera coordinates → Pixels in image coordinates

- Scene graph
- Camera
- Rasterization
- Animation, Interaction
- Lights
...this was not the only way to draw this pipeline...
...this was not the only way to draw this pipeline...

- OpenGL 4.5 Core Profile Specification
Lecture Content & Schedule (as planned)

<table>
<thead>
<tr>
<th>Date</th>
<th>Chapter</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.04.19</td>
<td>1</td>
<td>Introduction, Motivation, Basics</td>
</tr>
<tr>
<td>30.04.19</td>
<td></td>
<td>AB absent, no class</td>
</tr>
<tr>
<td>07.05.19</td>
<td>2</td>
<td>Transformations & Scene Graphs</td>
</tr>
<tr>
<td>14.05.19</td>
<td>3</td>
<td>3D Modeling</td>
</tr>
<tr>
<td>21.05.19</td>
<td>5</td>
<td>3D Camera & Rasterization</td>
</tr>
<tr>
<td>28.05.19</td>
<td>6</td>
<td>Light, Materials & Appearance</td>
</tr>
<tr>
<td>04.06.19</td>
<td>7a</td>
<td>Shading and Rendering</td>
</tr>
<tr>
<td>11.06.19</td>
<td>4</td>
<td>OpenGL (David Englmeier)</td>
</tr>
<tr>
<td>18.06.19</td>
<td></td>
<td>AB absent, no class</td>
</tr>
<tr>
<td>25.06.19</td>
<td>7b</td>
<td>Shading and Rendering II: Monte Carlo Methods</td>
</tr>
<tr>
<td>02.07.19</td>
<td>8</td>
<td>Animation</td>
</tr>
<tr>
<td>09.07.19</td>
<td>9</td>
<td>Interaction in 3D</td>
</tr>
<tr>
<td>16.07.19</td>
<td>10</td>
<td>Volume Rendering & Scalar Field Visualization</td>
</tr>
<tr>
<td>23.07.19</td>
<td>G</td>
<td>Guest: Markus Groß (head of Disney research Zürich)</td>
</tr>
</tbody>
</table>

Diagram:
- Scene graph
 - 3D models in model coordinates
 - Camera
 - 3D polygons in world coordinates
 - Rasterization
 - Lights
 - Pixels in image coordinates
 - Shading and Rendering
 - Animation
 - Interaction
 - Volume Rendering & Scalar Field Visualization

LMU München – Medieninformatik – Andreas Butz – Computergrafik 1 – SS2020
Literature Recommendations and Links

• Malaka, Butz, Hussmann: Medieninformatik, Pearson Studium 2009
 • v.a. Kapitel 8: 3D-Grafik
• Bungartz, Griebel, Zenger: Einführung in die Computergraphik, 2. Auflage, Vieweg, 2002
• Foley, Van Dam, Feiner: Computer Graphics - Principles and Practice, 3rd edition, Addison-Wesley, 2013
• OpenGL: http://www.opengl.org/
• Three.js: http://threejs.org/ (→ WebGL framework used in tutorials!)
Chapter 1 – Introduction, Motivation, Basics

• About this Class: Organization
• Tutorials
• What is Computer Graphics?
• Why Should I Learn about Computer Graphics?
• Very Brief History of Computer Graphics
• Math Recap: What We Need to Survive...

Based on lecture material by Regina Pohle-Fröhlich

1945-1952: “Whirlwind” computer (Jay Forrester, MIT)
Digital computer using oscilloscope screen displaying real-time aircraft data, later “SAGE” system

Using “light pen” for input

“Bouncing ball” (C. Adams)

1957-1969: “TX-2” computer at MIT
Lincoln Lab
Transistor-based computer providing interactive graphic displays
Ivan Sutherland, 1963: Sketchpad
Theory Development in the 1970s

- 1971: Raster Scan Principle (M. Noll, Bell Labs)
 - Connecting a TV-like display with computer memory
- 1973: First ACM “SIGGRAPH” Conference
- 1977-1978: Shadow computation (Crow, Williams)
- 1975: 3D Model “Utah Teapot” (M. Nevell, U. Utah)
- 1979: Raytracing (mirror reflection, transparency) (Kay, Whitted)
- 1984: Global illumination model “Radiosity” (Goral et al., Nishita)

Utah Teapot at Computer History Museum, Boston
Computer Graphics goes to Cinema: 1980s

- 1979: CG department of Lucas Film founded (ILM)
- 1980: Demonstration of video “Vol Libre” at SIGGRAPH (L. Carpenter)
- 1981: REYES - Predecessor of “Renderman” (by L. Carpenter at Lucas Film)
- 1986: “Pixar” founded (Catmull, Smith), (split off Lucas Film)
- 1988: Movie “The Abyss” (Cameron, water creature by ILM)
- 1989: Motion Capturing (Jim Henson)
- 1995: Movie “Toy Story” by Pixar (first feature-length fully computer-generated film)
- 2009: Movie “Avatar” (J. Cameron; 60% CG; >2.7 billion revenue; special 3D cameras, started 3D boom)
Chapter 1 – Introduction, Motivation, Basics

• About this Class: Organization
• Tutorials
• What is Computer Graphics?
• Why Should I Learn about Computer Graphics?
• Very Brief History of Computer Graphics

• Math Recap: What We Need to Survive…
Coordinate Reference Frames

• Dimensionality
 • We will meet: 2, 3 and 4 dimensions

• Types of coordinate systems
 • Cartesian (rectilinear): Pairwise orthogonal axes with (identical) linear scale
 • Non-cartesian (non-rectilinear): Many other systems
 • e.g. polar/spherical coordinates: angle plus distance
2D Cartesian Coordinate Reference Frames

- Device-independent commands of graphics packages:
 - Varying schemata: origin may be in lower-left corner, center, upper-left corner

- Device coordinates
 - Example: Scan lines on cathode ray tubes, printers: origin in upper left corner, y axis points downwards (other devices may have the origin in lower-left corner)
 - Normalized device coordinates: Range from 0.0 to 1.0 (real number)
 - Physical device coordinates: Pixel addresses of a display (integers)
Standard 3D Cartesian Coordinate Reference Frames

- Most frequently used “world coordinates” (e.g. in OpenGL): “Right handed” system, often depicted as looking from the z axis

- “Left handed” system used in special cases (e.g. 2D screen positions with additional depth information)

Image sources:
euclidianspace.com,
cornell.edu
Points and Vectors

• **Point**
 • Position specified with coordinate values in some reference frame
 • Fixed position
 • e.g. in 3D Cartesian coordinates: \((p_x, p_y, p_z)\)

• **Vector**
 • Tuple of real numbers, considered as element of a vector space
 • Direction
 • Often written vertically (column vector)
 • In CG, people are sloppy about the difference between row and column vectors!

• Difference between two positions is a vector
• Position can be specified by vector from origin in Cartesian system
• Vectors can be multiplied with a real number pointwise
• Two vectors of same length (i.e., dimension) can be added pointwise

\[P = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \]

\[\mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \]
Properties of Vectors

• Magnitude (length)

\[\mathbf{v} = (v_x, v_y, v_z) \quad ||\mathbf{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2} \]

• Direction angles

\[\cos \delta_x = \frac{v_x}{||\mathbf{v}||} \quad \cos \delta_y = \frac{v_y}{||\mathbf{v}||} \quad \cos \delta_z = \frac{v_z}{||\mathbf{v}||} \]
Scalar Product (Dot Product)

• The *dot product* computes a real (scalar) value from two coordinate vectors of equal dimension

\[\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z \]

• Application: Computation of angle between two coordinate vectors

\[\mathbf{a} \cdot \mathbf{b} = \| \mathbf{a} \| \cdot \| \mathbf{b} \| \cdot \cos \theta \]

• Application: Scalar projection of vector A in direction B

\[a_b = \mathbf{a} \cdot \frac{\mathbf{b}}{\| \mathbf{b} \|} = \| \mathbf{a} \| \cdot \cos \theta \]
Cross Product (Vector Product)

- The *cross product* of two coordinate vectors is a vector that is perpendicular to both given vectors
 - Direction: Right-hand rule
 - Magnitude: Equals spanned parallelogram

\[
\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}
\]

\[
\mathbf{a} \times \mathbf{b} = - (\mathbf{b} \times \mathbf{a})
\]

Matrices

• A matrix is an \((m \times n)\) arrangement of real numbers \((m \text{ rows, } n \text{ columns})\)
• Used in CG for expressing computations on coordinate vectors
• A matrix can be multiplied with a real number pointwise
• Two matrices of identical dimensions can be added pointwise
• Multiplying matrices:
 \((m \times p)\)-matrix \(A\) multiplied by \((p \times n)\)-matrix \(B\) gives \((m \times n)\)-matrix \(C\)

\[
C_{i,j} = \sum_{k=1}^{p} A_{i,k} \cdot B_{k,j} \quad 1 \leq i \leq m \quad 1 \leq j \leq n
\]
Multiplying a Matrix and a Vector

• Special case of matrix multiplication
• \((m \times p)\)-matrix \(A\) multiplied with vector \(v\) of length \(p\) gives vector \(w\) of length \(m\)

\[w_j = \sum_{k=1}^{p} A_{i,k} \cdot v_k \]

• If this all sounded difficult or long-forgotten:
 • Dig out your old school books
 • Re-read your Linear Algebra scripts
 • Attending the tutorials and doing the assignments will help!
• There will be more math in the rest of the lecture
• \textit{There will be math in the exam!}