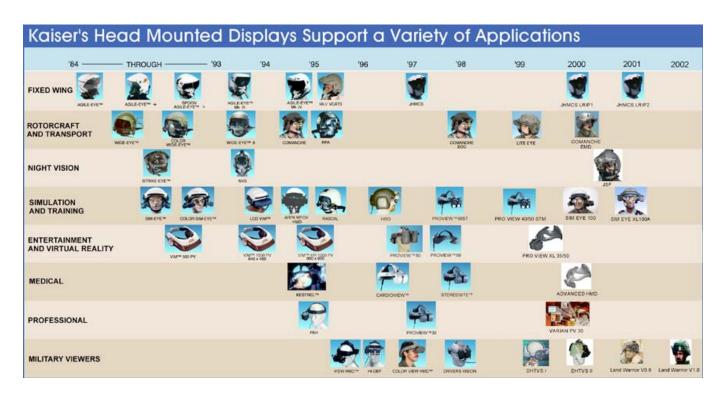
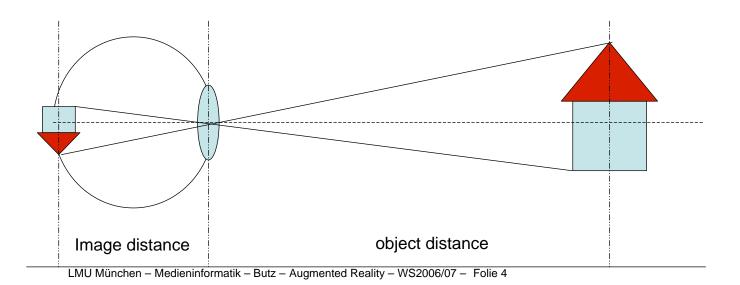
AR with head-mounted Displays


Vorlesung "Augmented Reality" Prof. Dr. Andreas Butz WS 2006/07

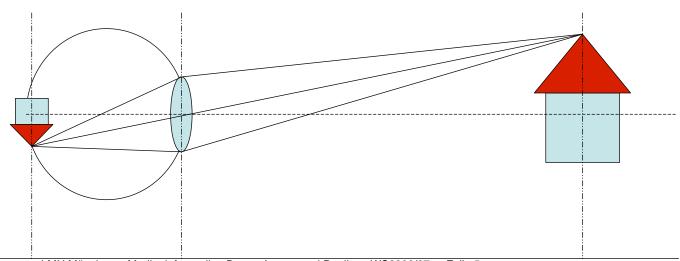
LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 1

Head-mounted Displays (HMDs)

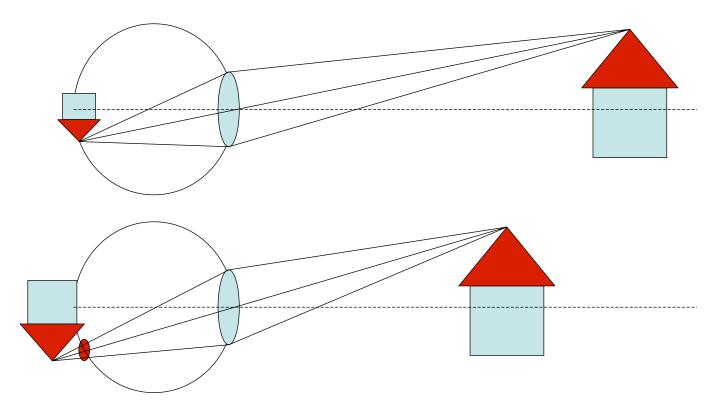
- Optics of the human eye
- HMDs: Working Principles, Problems
 - Closed (video only)
 - Optical see-through
 - Video see-through
- Examples of commercially available HMDs
- Head-up displays
- Proposed solutions to existing problems
- Research prototypes


A bit of history

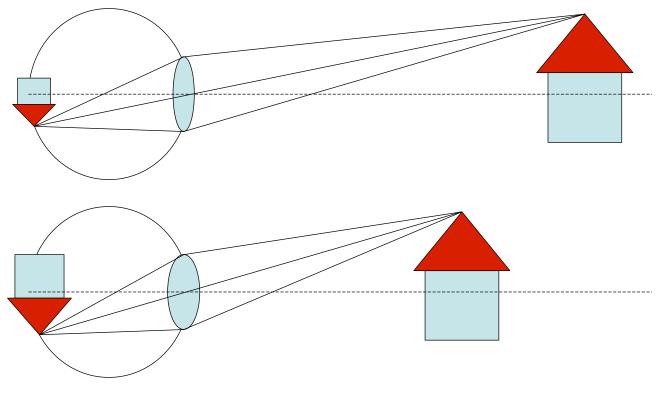
LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 3


Optical system of the human eye (1)

- Simplified principle: the pinhole camera
- Only one light beam from each object point to the corresponding image point


Optical system of the human eye (2)

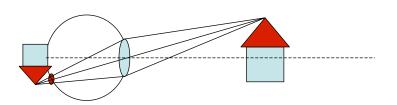
- Reality: a lens which has to be focused
 - all light rays from one object point have to meet in the same image point!



LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 5

Objects out of focus (depth of field)

Focusing the eye by adjusting the lens



LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 7

Resulting properties of the human eye

- Focal length of the lens can be adjusted to
 - Objects at infinite distance
 - Objects at ~20cm from the eye
 - Everything between these distances
 - Only one distance (range) at a time
- Eye needs time to adjust between objects at different distances

- Exhausting

Spatial vision: Depth Cues

- Several different types of cues used by human visual system
 - Static monocular cues
 - Stereopsis
 - Motion parallax
 - Oculomotor cues
 - Accommodation-convergence mismatch

LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 9

Static Monocular Cues

- Occlusion
- Relative Size
- Relative Height
- Linear Perspective
- Aerial Perspective
- Texture Gradient
- Shading

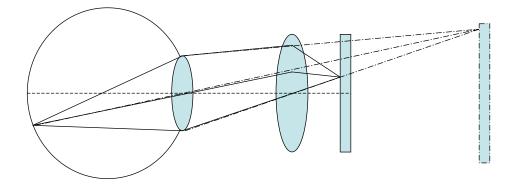
Stereopsis

- Static, binocular cue
- Each eye gets a slightly different image
 Monocular cues from each image
- Only effective within a few feet of viewer
 Useless if only distant objects

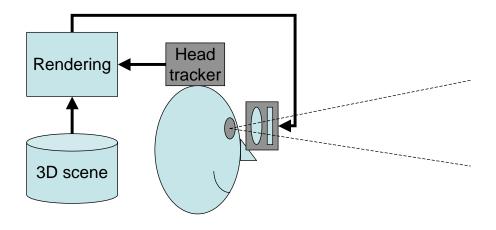
LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 11

Motion Parallax

- Dynamic, monocular cue
- Near objects move faster than far objects
- Generally more important than stereo!
- → head tracking is very important!


Oculomotor Cues

- Based on information from eye muscles
- Accommodation: lens shape
- Convergence: gaze direction
- HMDs confuse the brain with oculomotor cues
 - Accommodation focuses eye at one distance
 - Convergence says objects are at different distance


LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 13

Principle: closed (video only) HMD

- Monitor is mounted very close to the eye
- Additional lens makes it appear distant
- All images appear at the same distance
 Usually at infinity or slightly less

Creating VR with a HMD

LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 15

Challenges with HMDs in VR

- Lag and jitter between head motion and motion of the 3D scene
 - Due to tracking \rightarrow predictive tracking
 - Due to rendering → nowadays mostly irrelevant
- Leads to different motion cues from
 - Eye (delayed) and
 - Vestibular system (not delayed)
- Result: cyber sickness

nVision Industries

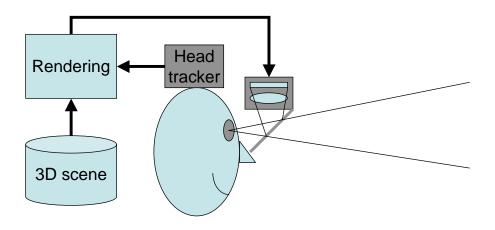
- "The Datavisor 80 contains wide field of view optics modules integrated with high-resolution CRTs. Designed to be worn for extended periods of time, the Datavisor 80 is built with optical, mechanical, and electrical components distributed around the unit for better balance and ergonomics." ;-)
- Datavisor HiRes:
 - Field of view: 72 deg
 - Resolution: 1280x1024

LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 17

SEOS HMD 120/40

- Resolution: 1280 x 1024
- Field of View: 80° x 67° per eye
- Overlap:50% (resulting in 120x67 deg FoV with a 40x67 deg stereo overlap)
- Weight: 1 Kg

Icuiti ™ M920


LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 19

Kaiser Electro Optics *ProView* SO35 *Monocular*

- Field of View: 32°x24°
- Resolution: 800x600
- Mounting: Clip on to helmet (Display module); Clip on to belt (Display Controller)
- Temp.: Operating: -32° to +55°C; Storage: -32°C to +71°C
- Humidity: Six 48-hour cycles, 20°C to 55°C, 95% RH
- Salt Fog: Four 24-hour cycles
- Vibration: Random vibration, 6 axis, 5 Hz to 2500Hz, up to 40 gs
- Immersion: Immersion in 1 meter of water for 2 hours
- \$10,500

Creating AR with optical see-through HMDs

LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 21

Advantages of optical see-through HMDs

- Preserve the richness of the world
 - Very high resolution of physical image
 - No lag between motion and phys. image
 - Physical objects can be focused at their correct distance

Challenges with optical see-through HMDs

- Lag and jitter between the physical and the virtual image
- Misalignment of physical and virtual image (registration)
- HMD can only add light to physical image
 - Looks like ghost images
 - Always in front of physical objects
- High dynamic range of the phys. image
 Use in bright sunlight almost impossible
- Virtual objects always focused at same distance
 - Permanent adaptation back and forth

LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 23

Construction: Boeing, 1994

- Assembly of wire harness for airplanes
- Assembled on a large board
- Traditionally tedious task
- Equip board with markers
- Show in HMD where to mount next wire

i-O Display Systems

- Resolution: 110,000
 pixels per LCD Panel
 = 230 x 173 lines of
 resolution
- Full color
- Stereo sound
- Field of view: 30 deg
- Price: 300\$

LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 25

Sony Glasstron

- Initially built for watching DVDs
- Video resolution
- No longer manufactured
- Amount of see-through can be regulated

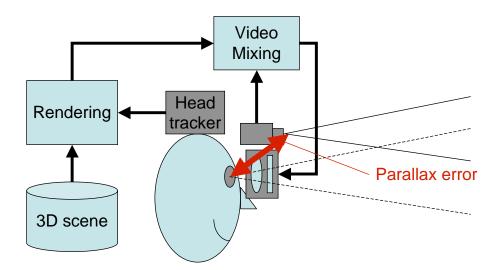
SAAB AddVisor™ 150

- Field of view: 46 deg
- Eye overlap: 100% or 50%
- Resolution: 1280x1024
- Full color

LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 27

nVision Industries

- Datavisor SeeThrough:
 - Field of view: 72 deg
 - Resolution: 1280x1024


KEO Sim Eye XL100A

- Resolution 1024x768
- Contrast: > 20:1
- Field of View: 50° x 100° with 30° Overlap
- Transmission: See through > 20%
- Collimation: Greater than 30ft. but less than infinity
- Weight: almost 3Kg
- Price: \$87,500

LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 29

Creating AR with video see-through HMDs

Advantages of video-based see-through

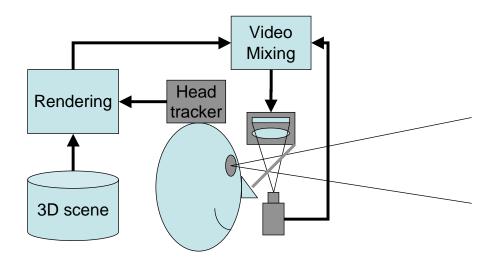
- Lag between physical and virtual image can be compensated
- Camera can be used for tracking as well
 - Physical image = raw tracking data
 - Perfect registration possible
- Video mixer can add or subtract light
 - Virtual objects can be drawn in black
 - Physical objects can be substituted
 - Virtual objects can be behind physical objects
- Just one image with a given focus distance

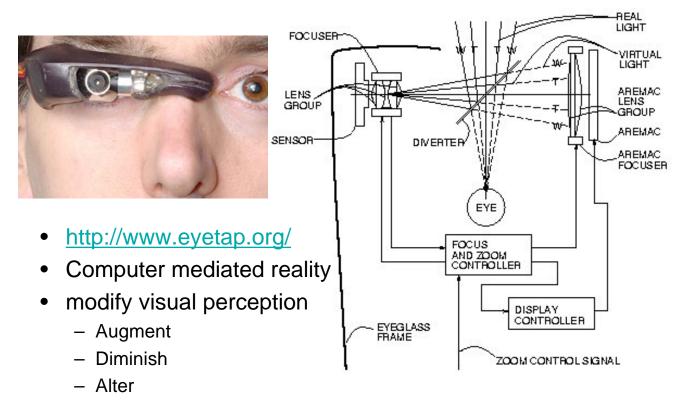
LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 31

Challenges of video-based see-through

- Lag between physical and virtual image can be compensated
 - -...by delaying the physical image
 - Leads back to the cyber sickness problem
- Parallax error can not be corrected electronically
 - Wrong stereo cues when used for stereo
- Richness of the world is lost
 - Video image just 0.5 megapixels
 - Resolution of human vision is much higher (>10x)

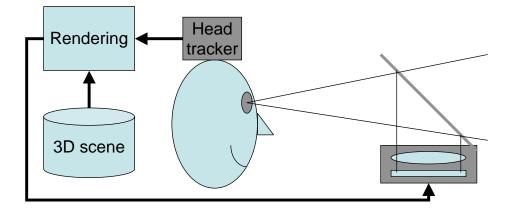
Video see-through examples




- Here: just 1 camera between the eyes
 - No stereo
 - Minimized parallax error

LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 33

Video see-through HMD without parallax error (e.g., eyetap device)

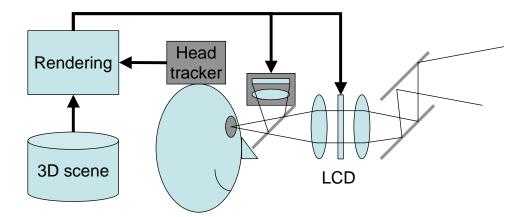


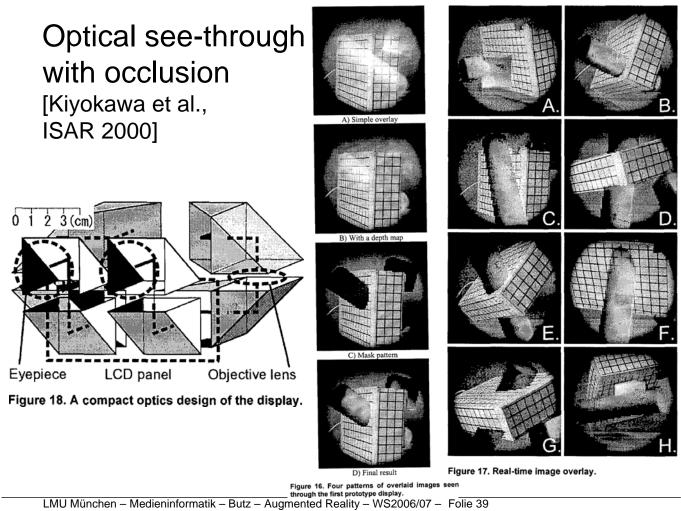
Eyetap Technology

LMU München - Medieninformatik - Butz - Augmented Reality - WS2006/07 - Folie 35

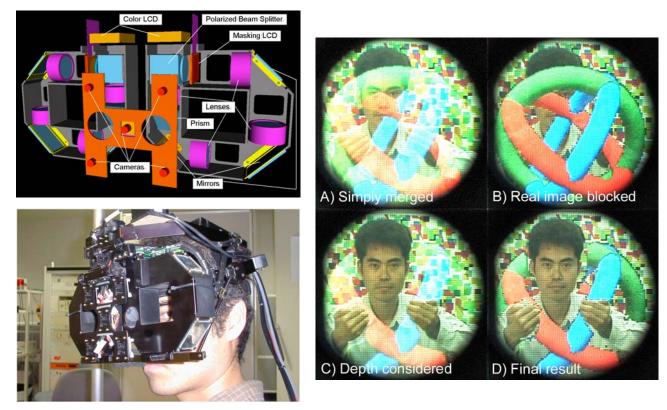
Creating AR with Head-up Displays (HUDs)

Head-Up Display


- Currently mostly military use
- limited applications in cars
- Fixed Display



- Very exact head or eye tracking needed
 Easy for jet pilots
- High brightness and dynamics needed


LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 37

Optical see-through with occlusion [Kiyokawa et al., ISAR 2000]

Optical see-through with occlusion [Kiyokawa et al., ISMAR 2003]

LMU München – Medieninformatik – Butz – Augmented Reality – WS2006/07 – Folie 40