Interaction techniques for AR

Vorlesung „Augmented Reality”
Prof. Dr. Andreas Butz
WS 2006/07

Ein Generisches AR-System

Sensorik

Realität

Feedback an Benutzer

Virtualität

Kombination realer und virtueller Inhalte

Einbeziehung der Ortsinformation in virtuelle Welt

Tracking (Ortsbestimmung)

Rendering und Realitätserweiterung
Interaction techniques for AR

- Interaction techniques borrowed from VR
 - Virtual Object selection & manipulation
 - 3D widgets, tools, wands,…
- Interaction with physical objects
 - Examples by Sony CSL/Rekimoto
 - Examples from TU Vienna/Studierstube

Reference frames for virtual objects

- **Screen-stabilized**: always in the same screen position or HMD position
 - Good for text, menus, status displays
- **Body-stabilized**: always in the same area around the body
 - Example: tool palettes
- **World-stabilized**: always in the same place in the real world
 - Example: labels on physical objects
- **Bound to a tracker target or marker**
 - Examples: see AR Praktikum ;-)

Dimensionalities of interaction

<table>
<thead>
<tr>
<th>Medium → Content</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>2D Screen interfaces, windows</td>
<td>PIP, billboards, screen stabilized</td>
</tr>
<tr>
<td>3D</td>
<td>Fishtank VR</td>
<td>Full 3D interaction in AR & VR</td>
</tr>
</tbody>
</table>

3D mouse: example from Studierstube

Video
FingARtips [Buchmann et al. 2004]

- Glove with 3 AR Markers
- Interaction by gestures
 - Grab objects
 - Move grabbed objects
 - Let objects go
 - Scale objects
- Application: urban planning

The Tinmith glove-based interface [Piekarski, 2002]

- Two gloves equipped with:
 - ARToolkit Markers for position
 - Contacts in the finger tips
- Connecting the fingers can
 - Choose from a menu
 - Select a manipulation mode
- Direct manip. of virtual objects
- Two-handed manipulation

Video

Video through the HMD

Video from outside
The Magic Book [Billinghurst 2000]

- Flipping through a physical book
- Pages contain markers
- On the pages appear virtual objects

New version: BlackMagic

3D magic lenses [Looser 2004]

- Metaphor: magnifying glass
- Can show different visualizations of a virtual object

Video
World in Miniature

- Small 3D model of the environment
- Can be turned and viewed from all directions
- Can be used for selection of remote objects

- Example video taken from the Signpost system (Studierstube)

X-ray vision [Bane & Hoellerer, ISMAR 2004]
Navicam: The world through the computer
[Rekimoto & Nagao, UIST 1995]

- Video see-through with a handheld device
- Marker recognition
- Annotation of real world:
 - New journals on a book shelf
 - Appointments on a calendar
 - ToDos on a pin board
 - Labels on a door
 - Navigation signs in the environment

Augmented Surfaces
Jun Rekimoto and Masanori Saitoh, CHI'99

- Combination of mobile devices and projection surfaces
- Interaction techniques:
 - hyperdragging
 - pick-and-drop
 - pick-and-beam
 - digital attachment
 - interaction objects for tangible interaction
 - Camera-based acquisition of images
 - Selection from physical catalogues
Tangible Augmented Reality for Computer Games [Ulbricht 2002]

- Idea: use physical objects (Markers) as a handle for virtual objects
 - Feels like direct manipulation
 - Easy to implement

Studierstube: The Personal Interaction Panel (PIP) [Szalavari & Gervautz, 1997]

- Two-handed interaction
- Metaphor: slate & crayon
- Manipulation of two physical objects
 - Feels „real“
 - Weight of the objects
 - Acting on a surface
 - Familiar interaction
 - Feeling of privacy
 - Easy to attach tracking
 - Arbitrary graphical overlays
Figure 1. Direct selection of objects by inserting the pen into the “floating” model (background illustrates augmentation).

Figure 2. “Drag & Drop” objects from a clipboard in 3 dimensions.

Figure 3. In addition to direct manipulation, widgets can be used for exact scaling ...

Figure 4. ... or rotation of objects.

Figure 11. For scientific visualization the PIP can be used to specify and edit cutting planes ...

Figure 12. ... or measure simulated parameters at given locations and show instantly their evolution as 3D-graph on the panel.

Figure 13. Multidimensional parameters at any point are shown using glyphs on the PIP or directly at the measuring point.

Figure 14. Introducing particles directly in an ongoing dynamic simulation should be very intuitive.
Figure 6. Camera positioning with the pen

Figure 7. Enlarged view of a detail

Studierstube: The Personal Interaction Panel (PIP)
[Szalavari & Gervautz, 1997]
The Virtual Dressmaker [Keckeisen 2003]

- PIP as a palette and pen as a manipulation tool
- Physical simulation of clothing fabric [Video]
 - Interact with the fabric directly
 - Use 3D widgets to manipulate whole model

Studierstube: the iOrb [Reitmayr et al. 2005]

- One-handed spatial input and command
 - 3DOF orientation tracker
 - Switch to trigger actions
- Easy to build
- Easy to use
- Physical object
 - Weight
 - Inertia
 - Elasticity
Studierstube: the iOrb [Reitmayr et al. 2005]

- Widgets for visual feedback
 - Constrained to one axis (a+b+d)
 - Using 3 axes (c)

- See Video

The Designer’s Outpost [Klemmer et al. Uist 2001]

- Manipulation of physical sticky notes on a smartboard
- Augmentation by back projection
- Interaction through smartboard
- Additional cameras

- Task: design the structure of a web site
 - Keep the physical process
 - Augment it by technology
The Designer‘s Outpost: Interaction Techniques

ADD
LINK
REMOVE
INK
MOVE
STICKY
DELETE
MENU
SAVE
SAVE