Übung zur Vorlesung
Mensch-Maschine-Interaktion

Otmar Hilliges
Ludwig-Maximilians-Universität München
Wintersemester 2006/2007
Design Cycles & Prototyping

• Creating prototypes is important to get **early** feedback
 – from the project team (prototypes help to communicate)
 – from potential users

• Different types of prototypes
 – Low-fidelity prototypes (e.g. paper prototypes, sketches)
 – Hi-fidelity prototypes (e.g. implemented and semi-functional UI, could look like the real product)
 – Fidelity is referring to detail
Design Cycles & Prototyping

• Tools & Methods
 – Sketches & Storyboards
 – Paper prototyping
 – Using GUI-builders to prototype
 – Limited functionality simulations
 – Wizard of Oz
Sketches & Storyboards

- Storyboards as in movies
 - A picture for each key scene
- Sketch out the application
 - Key screens
 - Main interaction
 - Important transitions
- Helps to communicate and validate ideas
 - Easy to try out different options.
- Ignore details, e.g.
 - what font to use, how icons will look like
Paper Prototypes

• Specify the set of tasks that should be supported
• Create a paper prototype using office stationery
 – Screens, dialogs, menus, forms, …
 – Specify the interactive behavior
• Use the prototype
 – Give users a specific task and observe how they use the prototype
 – Ask users to “think aloud” – comment what they are doing
 – At least two people
 » One is simulating the computer (e.g. changing screens)
 » One is observing and recording
• Evaluate and document the findings
 – What did work – what did not work
 – Where did the user get stuck or chose alternative ways
 – Analyze comments from the user
• Iterate over the process (make a new version)
Low-Fidelity Prototyping

• Advantages of paper prototypes
 – Cheap and quick – results within hours!
 – Helps to find general problems and difficult issues
 – Make the mistakes on paper and make them before you do your architecture and the coding
 – Can save money by helping to get a better design (UI and system architecture) and a more structured code
 – Enables non-technical people to interact easily with the design team (no technology barrier for suggestions)

• Get users involved!
 – To get the full potential of paper-prototypes these designs have to be tested with users
 – Specify usage scenarios
 – Prepare tasks that can be done with the prototype
Minimize the time for design Iterations
Make errors quickly!

- Idea of rapid prototyping
- Enables the design team to evaluate more design options in detail
- If you go all the way before evaluating your design you risk a lot!
- Sketches and paper prototypes can be seen as a simulation of the real prototype

- Without paper prototyping:
 - Idea – sketch – implementation – evaluation

Slow Iteration

- With paper prototyping:
 - Idea – sketch/paper prototype – evaluation – implementation - evaluation

Quick Iteration
Video – N&N Paper Prototyping

Nielsen Norman Group Video:
Paper Prototyping: A How-To Training Video
High-fidelity Prototype

- Looks & feels like the final product to the user
 - Colors, screen layout, fonts, …
 - Text used
 - Response time and interactive behavior
- The functionality however is restricted
 - Only certain functions work (vertical prototype)
 - Functionality is targeted towards the tasks (e.g. a search query is predetermined)
 - Non-visible issues (e.g. security) are not regarded
- Can be used to predict task efficiency of the product
- Feedback often centered around the look & feel
- Standard technologies for implementation
 - HTML, JavaScript
 - Flash, Director, Presentation programs
 - GUI Builder (e.g. Visual Basic, Delphi, NetBeans)
Video – N&N High Fidelity

Functional Prototypes

• Often used as synonym for high-fidelity prototype

• To encourage feedback that is not related to the look & feel it may be helpful to make the GUI look rough, see reading: R. Van Buskirk and B. W. Moroney: Extending Prototyping, IBM Systems Journal - Vol. 42, No. 4, 2003 - Ease of Use.
Addition – about Prototypes
Horizontal Prototyping

• Demonstrate the feature spectrum of a product
• Allows the user to navigate the system
• The actual functions are not implemented
• Helps to evaluate/test
 – Navigation (e.g. finding a specific function or feature)
 – Overall user interface concept
 – Feature placement
 – Accessibility
 – User preferences
• Applicable in low-fidelity prototyping and high-fidelity prototyping
• Used in early design stages
 – To determine the set of features to include
 – To decide on the user interface concept
• Example: overall usage of a mobile phone
Vertical Prototyping

- Demonstrate a selected feature of a product
- Allows the user only to use this specific function
- The details of the function/feature are shown/implemented
- Helps to evaluate/test
 - The optimal design for a particular function
 - Optimize the usability of this function
 - User performance for this particular function
- Mainly used in high-fidelity prototyping but can be applicable to low-fidelity prototyping
- Used in early design stages
 - To compare different designs for a specific function
- Used in later design stages
 - To optimize usage of a function
- Example: a new method for writing SMS on a mobile phone
Wizard-of-Oz

• “The man behind the curtain”
• Basically don’t not implement the hard parts in the prototype – just let a human do
• Typical areas
 – Speech recognition
 – Speech synthesis
 – Annotation
 – Reasoning
 – Visual Perception
• Provides the user with the experience without extensive implementation effort for the prototype
Video – N&N Wizard Of Oz

Nielsen Norman Group Video:
Paper Prototyping: A How-To Training Video