3 Cryptographic Techniques – A Brief Introduction

- 3.1 Introduction to Cryptography
- 3.2 Symmetric Encryption
- 3.3 Asymmetric (Public-Key) Encryption
- 3.4 Digital Signatures
- 3.5 Public Key Infrastructures

Literature:

Bruce Schneier: Applied Cryptography, 2nd ed., John Wiley 1996

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001 (Chapter 3)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 1

Purpose of Cryptographic Techniques

- To protect the content of communication between two parties
 - Protection against various kinds of attacks
 - Preserving confidentiality and integrity of a message
 - Computer-equivalent to packaging and sealing
- To establish the identity of communication partners (authentication)
 - Computer-equivalent to hand-written signature
 - Nonrepudiation (Zurechenbarkeit): Avoiding false denial of the fact that someone has sent a message
- · Applications for networked multimedia:
 - Encrypted content in DRM, decryption only for authorized users
 - Packaging keys and right specifications in DRM
 - Identifying business partners for payment procedures
 - Protecting electronic forms of money
 - Protecting important personal data

Ludwig-Maximilians-Universität München

Prof. Hußmann

Encryption and Decryption

- A sender (often called Alice) wants to send a message to a receiver (often called Bob), in a way that an eavesdropper (often called Eve) cannot read the message.
 - Plaintext message (binary data) M
 - Ciphertext C
- Encryption E:

$$E(M) = C$$

· Decryption D:

$$D(C) = M$$

such that D(E(M)) = M

- · Encryption/Decryption should not rely on keeping the algorithms secret.
 - Kerckhoffs principle

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 3

Keys

- Encryption E:
 - $E(K_1, M) = C$
- · Decryption D:

$$D(K_2, C) = M$$

such that $D(K_2, E(K_1, M)) = M$

· Special case:

Identical keys for encryption and decryption

 Security is based on the secrecy of the keys (not the secrecy of algorithm details)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Attack Terminology

- · Ciphertext-only attack
 - Recover the plaintext or the keys based only on the ciphertext
- Known-plaintext attack:
 - Deduce the keys from given plaintext and corresponding ciphertext
- · Chosen-plaintext attack:
 - Attacker (cryptanalyst) can obtain the encoding result on an arbitrary plaintext
- · Chosen-ciphertext attack:
 - Attacker (cryptanalyst) can obtain the decoding result on an arbitrary ciphertext
- · Brute-force attack
 - Trying out all possible keys
 - Breakability depends on available computing power

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 5

3 Cryptographic Techniques – A Brief Introduction

- 3.1 Introduction to Cryptography
- 3.2 Symmetric Encryption
- 3.3 Asymmetric (Public-Key) Encryption
- 3.4 Digital Signatures
- 3.5 Public Key Infrastructures

Literature:

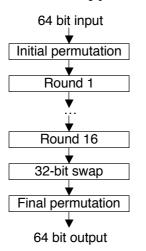
Bruce Schneier: Applied Cryptography, 2nd ed., John Wiley 1996

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001 (Chapter 3)

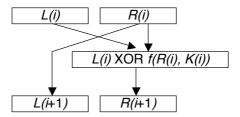
Ludwig-Maximilians-Universität München

Prof. Hußmann

Symmetric Cryptographic Algorithms


- · Encryption and decryption using the same key
 - Alternatively: One key can be computed from the other
- Stream algorithms or stream ciphers:
 - Operate bit-by-bit (or byte-by-byte)
- · Block algorithms or block ciphers:
 - Operate on larger groups of bits (blocks)
 - Block size should not be too large typical 64 bits

Ludwig-Maximilians-Universität München


Prof. Hußmann

Multimedia im Netz - 3 - 7

Data Encryption Standard DES

- Symmetric block cipher (64 bit blocks)
- Adopted by U.S. government in 1977, based on IBMs Lucifer algorithm
 - Designed for hardware realization
- · Key length: 56 bits
- Each of the 16 "rounds":

Encoding and decoding algorithms identical

f does a number of permutations and substitutions

Ludwig-Maximilians-Universität München

Prof. Hußmann

DES - Example for an Aging Standard

- Brute force attack to DES: 256 permutations to be tried
 - 56 bit keys considered unbreakable in 1977
- · Specialized hardware can test DES keys very fast
 - Rumours persist that the NSA (US National Security Agency) can break 56-bit DES in a few minutes time
 - 1997: DES Challenge
 - » After 4 months, a DES-encrypted message could be decrypted
 - 2000: DES Challenge III won by "distributed.net" in 22 hours
 - » Specialized supercomputer + CPU time from 100.000 PCs in the Internet
 - » Key test rate 240 billion keys/second
- · Practical workaround: "Triple DES"
- · Obstacle for unbreakable codes:
 - U.S. government apparently wants to be able to break the standard encryptions
- Strong cryptographic products are considered weapon technology by the U.S. government!
 - Export restrictions

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 9

IDEA

- Xuejia Lai/James Massey (ETH Zürich) 1990
 - Strengthened against "differential cryptoanalysis" in 1992
 - Partially patented by Ascom (Switzerland) until 2011
- · Block cipher, working on 64 bit blocks
- · Key length 128 bit
- · Twice as fast as DES (in particular fast in software)
- · Idea: "Mixing operations from different algebraic groups"
 - XOR
 - Addition modulo 216
 - Multiplication modulo 2¹⁶+1
- · Can be considered as quite safe according to current knowledge

Ludwig-Maximilians-Universität München

Prof. Hußmann

Advanced Encryption Standard AES

- U.S. National Institute of Standards and Technology (NIST)
 - 1997: Call for proposals for an unclassified, publicly disclosed symmetric encryption algorithm, key sizes 128, 192, and 256 bits
 - 15 submissions, 5 candidates selected (MARS, RC6, Rijndael, Serpent, Twofish)
 - 2000: Rijndael declared to be official AES
- · Rijndael (Joan Daelen, Vincent Rijmen, Belgium):
 - Between 10 and 14 rounds, depending on key and block length
 - Operations in each round:
 - » XOR
 - » Byte substitution
 - » Row shift (in a grid representation)
 - » Mixing of columns based on polynomial (in a grid representation)
- · Other common alternative symmetric algorithms: RC4, RC6

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 11

3 Cryptographic Techniques – A Brief Introduction

- 3.1 Introduction to Cryptography
- 3.2 Symmetric Encryption
- 3.3 Asymmetric (Public-Key) Encryption
- 3.4 Digital Signatures
- 3.5 Public Key Infrastructures

Literature:

Bruce Schneier: Applied Cryptography, 2nd ed., John Wiley 1996

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001 (Chapter 3)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Asymmetric or Public Key Encryption

- Main problem of symmetric cryptography: How to obtain the shared, secret key?
 - Off-line transportation
 - Key distribution architectures, e.g. Kerberos
- Public-key cryptography: Whitfield Diffie, Martin Hellman 1976
 - Each person gets a private (secret) key and a public key
- Public-Key Cryptosystem:

Encryption with public key: PK(M) = CDecryption with secret key: SK(C) = Msuch that SK(PK(M)) = M

- By publicly revealing PK, the user does not reveal an easy way to compute SK.
- · Mathematical background: "Trapdoor one-way function"
 - e.g. prime factorization of large numbers

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 13

RSA: Mathematics

- · Ronald Rivest, Adi Shamir, Leonard Adleman 1978 (MIT)
- · Creating a public/secret key pair:
 - Choose two large primes p and q and compute the "modulus" n = pq
 - Randomly choose a number e < n, relatively prime to $\phi = (p-1)(q-1)$ (Eulers totient function)
 - » (n, e) is the public encryption key
 - Compute $d = e^{-1} \mod \phi$, i.e. such that (ed-1) is divisible by ϕ
 - » (n, d) is the secret decryption key
- · Encryption:

 $C = M^e \mod n$

· Decryption:

 $M = C^d \mod n$

For an example, see e.g. http://www.di-mgt.com.au/rsa alg.html

Ludwig-Maximilians-Universität München

Prof. Hußmann

RSA: Pragmatics

- · Key size is variable, typical 1024 bits
- · RSA relies on exponentiation which is computing-intensive
 - DES is at least 100 times as fast as RSA in software and 1000 to 10000 times as fast in hardware
- Security of RSA is conjectured to rely on factorization of large numbers into primes
- Hybrid usage of symmetric and asymmetric cryptosystems (enveloping)
 - Choose a symmetric key (e.g. for AES)
 - Encode the symmetric key with an asymmetric cryptosystem (e.g. RSA) to transmit the shared (symmetric) key to the communication partner
 - Combination of advantages:
 - » Use asymmetric system for keeping the secrets locally
 - » Use symmetric system for mass-data encoding
- RSA is part of many Internet protocols for secure interaction, e.g. S/MIME, SSL, TLS, IPsec, ...

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 15

3 Cryptographic Techniques – A Brief Introduction

- 3.1 Introduction to Cryptography
- 3.2 Symmetric Encryption
- 3.3 Asymmetric (Public-Key) Encryption
- 3.4 Digital Signatures
- 3.5 Public Key Infrastructures

Literature:

Bruce Schneier: Applied Cryptography, 2nd ed., John Wiley 1996

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001 (Chapter 3)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Digital Signature with Asymmetric Cryptosystems

- · Message authentication (digital signature):
 - To establish trust that a message actually originates from a certain sender
 - Must involve full message body, i.e. similar to message encryption
- Some asymmetric cryptosystems allow to use "inverse encryption" for a digital signature, e.g. RSA
 - For such cryptosystems, the inverse equation holds: PK(SK(M)) = M
 - Encryption with own secret key
 - Verification possible by anybody knowing the public key
- Example: Suppose Alice wants to send a message M to Bob ensuring the message's integrity and that it is from her

 $S = M^d \mod n$

(n, d) is Alice's secret key Equivalent to decryption algorithm

- Alice sends *M* and *S* to Bob
- · Bob verifies:

 $M = S^e \mod n$

(n, e) is Alice's public key Equivalent to encryption algorithm

 Other digital signature standards exist, e.g. DSS/DSA (Digital Signature Standard/Algorithm by NIST)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 17

Message Digesting or Hashing

- · Sometimes not encryption, but integrity of message is the goal
 - Simpler algorithms similar to symmetric encryption
- · Hash (or digesting) function for messages
 - Computes short code from long message
 - Difficult to invert (i.e. to obtain message from code)
 - Collision-resistant (i.e. unlikely to find two messages with same hash code)
- · Examples of message digesting algorithms:
 - MD5 (Ron Rivest) (128 bit code)
 - Secure Hash Algorithm SHA (NIST) (160 bit code)
- Combination of message digest and signing the digest:
 - Faster way of authenticating a message

3 Cryptographic Techniques –A Brief Introduction

- 3.1 Introduction to Cryptography
- 3.2 Symmetric Encryption
- 3.3 Asymmetric (Public-Key) Encryption
- 3.4 Digital Signatures
- 3.5 Public Key Infrastructures

Literature:

Bruce Schneier: Applied Cryptography, 2nd ed., John Wiley 1996

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001 (Chapter 3)

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 19

Public Key Infrastructure

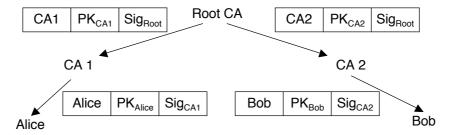
- Weak point in public-key cryptosystems
 - Bogus public key associated with a valid identity
 - Attacker can masquerade as another person
- Establishing trust in public keys:
 - Trusted Third Party (TTP)
 - » e.g. governmental organisation, financial institution
 - TTP issues a message (certificate) that contains
 - » User identity

Certificate

» Public key

» Validity period

Identity PK Signature


- » Issuer (TTP identity)
- TTP "signs" certificate
 - » This can be achieved by using the own public key (see next section)
 - » All participants know the signatures (public keys) of TTP, i.e. can trust that the certificates actually come from the issuing TTP

Ludwig-Maximilians-Universität München

Prof. Hußmann

Certification Authorities

- · A TTP issuing certificates is a Certification Authority (CA)
- · CAs are organized in a hierarchy, signature of root CA universally known

The certificates for the public key can be transferred with the message (or put on a website etc.)

È.g. message from Alice to Bob:


Ludwig-Maximilians-Universität München

Prof. Hußmann

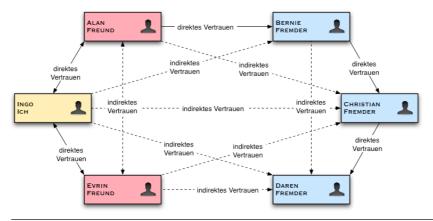
Multimedia im Netz - 3 - 21

Digital Signatures and PKI

- The "chain of trust" in a PKI can be reduced to the single fact
 - Everybody knows the public key PK_{Root} of the Root CA
- Root CA signs CAx certificates using its secret key SK_{Root}
 - Everybody can verify the certificates using PK_{Root}
- Cax signs certificates using its secret key SK_{CAx}
 - Everybody can verify the certificate as soon as he has PK_{CAx}
 - ... which he can obtain from a Root-signed certificate

X.509

- ITU-T X.500 recommendations series
 - Global database representing objects (people and processes)
 - Tree structured
 - » Top level = countries
 - Identity of an object is a pathname in the tree: Distinguished Name (DN)
 - » E.g. "c=GB, o=Universal Exports, cn=James Bond" (o: organization, cn: common name)
- ITU-T recommendation X.509
 - Public key certificate data format
 - Linking a public key with an X.500 Distinguished Name (= Identity)
 - Further fields for validity etc.


Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz - 3 - 23

Web of Trust

- · No central certification authority; mutual certification
- · Users can define individual level of trust in the owner of a key
- · Well-known implementations: PGP and GPG

Ludwig-Maximilians-Universität München

Prof. Hußmann