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Abstract— Both scientists and normal users face enormous amounts of data, which might be useless if no insight is gained from
it. To achieve this, visualization techniques can be used. Many datasets have a dimensionality higher than three. Such data is
called “hypervariate” and cannot be visualized directly in the three-dimensional space that we inhabit. Therefore, a wide variety of
specialized techniques have been created for rendering hypervariate data. These techniques are based on very different principles
and are designed for very different areas of application. This paper gives an overview of six representative techniques. For most
techniques a rendering of a common dataset is provided to allow an easier comparison. Furthermore, an evaluation of the strengths
and weaknesses of each technique is given. As an outlook, two papers dealing with quantitative analysis of visualization methods are
presented.
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1 INTRODUCTION

Modern information systems and embedded computers create an ever
increasing stream of data. For example, Fleming [8] lists over a hun-
dred different sensor types used in automotive applications today. The
data from these sensors might help engineers to find defects in a car
in an early stage. However, without effective ways to explore and gain
knowledge from this data, “the databases become datadumps” [1].

This is where information visualization comes into play: Its main
goal is to help the user gain insight into a given dataset [18]. Visu-
alization has been applied for centuries, for example in the form of
cartography. Over this time a variety of different methods has been
created, catering to different application fields. In many of these fields
fields, so called “hypervariate data” needs to be visualizated, requiring
special techniques. In this paper, I will explore the visualization of
hypervariate data and discuss some representative methods for visual-
izing hypervariate data.

2 HYPERVARIATE DATA

In this paper, data will be considered as discrete samples of some
source, which can consist of different entities, different periods of time
or a combination of both [6]. In all cases, the result is a set of values
for each datapoint. The cardinality of this set depends on the num-
ber of variables sampled. These values can be discrete or continuous.
However, discrete values can still be mapped to real numbers. There-
fore, a dataset with n samples of p variables can be considered as a set
of n points in p-dimensional space Rp [2].

In case p ≤ 3 the data can be directly visualized in a three-
dimensional universe (the reasons why our universe is inherently
three-dimensional can be found in [5]). However, in many cases p� 3
(see section 3). For this kind of data specialized visualization methods
are necessary. To overcome the limited dimensionality of the space
we inhabit, these methods commonly use special rendering methods
and the interactive capabilities of modern computers. The main part
of this paper focuses on an overview of different rendering techniques
for hypervariate data, however, one interactive technique (4.2.4) will
be discussed for completeness.

3 APPLICATION DOMAINS FOR HYPERVARIATE DATA VISUAL-
IZATION

As aforementioned, hyperdimensional data occurs in a multitude of
instances. In the following section, I will explore a representative se-
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lection of application domains for hypervariate information visualiza-
tion.

3.1 Everyday decision making
The dataset illustrating this example was provided by Ramos and
Donoho [17]. It consists of 8 attributes (among others mileage, horse-
power and country of origin) of 406 cars produced from 1970 till 1982.

Hypervariate data visualization is not restricted to scientific applica-
tions. Making informed decisions is one of the challenges of everyday
life. Take for example the purchase of a car. The buyer faces a large
number of possible choices. Each car is characterized by a number of
attributes, most of which can be quantified. The intended application
of the vehicle and the financial possibilies of the buyer usually dic-
tate a tradeoff between these attribues. In this situation, information
visualization methods can help to make that tradeoff.

3.2 Commercial data analysis
The example dataset for this scenario was presented by Kandogan
[12]. It contains 21 attributes of customers of telecommunications
company (among others number of calls to customer service, domestic
and international charges and whether the user has quit the service).

Most companies, but especially those in the telecommunication sec-
tor, can collect data about their customers. If this data is properly un-
derstood, it can be used to optimize the business model. Kandogan
proposed [12] that telecommunications companies need to understand
why customers quit their service. If this is accomplished, customers
with similar patterns can be identified and possibly retained through
the use of various marketing methods.

3.3 Sociopolitical studies
A small dataset is presented by Kleiner et al. [14]. It contains the
percentage of votes for republican party from six souther US states
in six different election years. This relatively small dataset is used as
an example because of the known behaviour of the states. However
data like this also exists for all states and all election years. Analysis
of these large datasets can be used to explain trends and shifts in the
political climate of a country.

4 REPRESENTATIVE TECHNIQUES

In the following two sections a brief review of the representative tech-
niques for hypervariate information visualization is given. These tech-
niques have been selected with the goal of showing a wide spectrum of
graphical approaches in mind. To simplify a comparison of the differ-
ent techniques, they were applied to the common data from 3.1. This
was already used in [12], [20], [16] and offers the advantage of being
understable without special knowledge. From now on, this dataset will
be referenced as “car example”. Unless otherwise noted the illustra-
tions were created by the author using custom implementations of the
respective techniques.
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Fig. 1. (a) Correlated data, ρ = 1, .8, .2,0,−.2,−.8,−1 [20]. 1(b) 10000
uncorrelated datapoints

4.1 Traditional projection techniques

Projection techniques work by transforming the p-dimensional coor-
dinates of the points in the dataset and in the process reduce the di-
mensionality. The resulting points can then be directly rendered in the
R2.

4.1.1 Parallel Coordinates

Parallel coordinates were first introduced by Maurice d’Ocagne in
1885 [4]. They gained wide popularity after Inselbergs independent
discovery [10]. Inselberg designed parallel coordinates with multi-
dimensional geometry in mind and the example application in [10]
used parallel coordinates to implement an air traffic collision avoid-
ance system. This technique has a mathematical basis which exceeds
most other methods.

A point p = (x1, ...,xp) is usually rendered in euclidian space with
orthogonal coordinate axes. The main problem with this is the quick
consumption of space. Therefore, this rendering method only works
if p ≤ 3, when no projection is applied. Parallel coordinates abandon
the orthogonality of the coordinate axes. Instead, the axes are aligned
in parallel on a plane, in an arbitrary order. Each point in Rp is then
represented as a polyline through the values of each dimension on the
respective axis. This has two fundamental advantages: Firstly, the
space occupied by the plot is only linear with p. This means that data
with dozens of dimensions can still be easily plotted. Secondly, there
are no ambiguities in the representation of data, while still representing
all dimensions. Therefore, in contrast to other projection techniques,
there is no loss of information.

The parallel coordinate representation exhibits a fundamental du-
ality with cartesian coordinates: As aforementioned, points in the
cartesian space are mapped to lines in parallel coordinates. Further-
more, a line in Rp consists of an infinite number of points. A subset
of n of these points can be represented in parallel coordinates. The
line segments between the coordinate axes intersect in p− 1 points
(these points do not necessarily lie between the axis; in extreme cases
the lines can be parallel, meaning an intersection at infinite distance).
Therefore, a line in cartesian space is represented by points (or a single
point, if p = 2) in parallel coordinates. Wegman calls this “point-line,
line-point duality” [20].

Besides intersection points, the line segments between two axes
also define an envelope. Using this envelope, the duality is valid for
more complex objects: An ellipse in the plane defined by two axes
results in a hyperbolic envelope if the axes are neighbours in the par-
allel coordinate plot. This has implications for the interpretation of
statistical data in parallel coordinate plots. The scatterplot of two un-
correlated variables approximates an ellipse. Two perfectly correlated
variables on the other hand form a straight line.

Using these properties, neighbouring axes in a parallel coordinate
plot can easily be examined for correlations. Figure 1(a) illustrates
this. It shows 8 variables, with correlations between the variables
ranging from 1 to -1. Correlated data appears as parallel lines or lines
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Fig. 2. Two permutations of the car example data from 3.1 Both graphs
show the same data, but with different orders of the axes

intersecting in a single point. Parallel and intersecting lines respec-
tively represent a positive and negative correlation. The hyperbolic
form of uncorrelated variables is less obvious. Figure 1(b) shows a
plot of 10000 uncorrelated random datapoints rendered with low opac-
ity. This plot exhibits the hyperbolic envelope more clearly. However,
because of the random nature of the data, a perfect hyperbolic curve is
not to be expected.

Figure 2(a) shows a plot of the car example from 3.1. Multiple prop-
erties of the dataset can be seen from this plot: There is a strong neg-
ative correlation between mileage and number of cylinders. Displace-
ment and horsepower of the engine are positively correlated, while
weight and acceleration are negatively correlated. Furthermore, the
majority of the cars in the dataset come from the US (origin 1). Fur-
ther properties can be discovered when a different permutation of the
axes is examined.

Figure 2(b) shows such a permuted a plot. Here, it can be seen
that European carmakers (origin 2) offer the most fuel efficient cars,
whereas American companies (origin 1) produce more low-mileage
cars and Japanese more high-mileage cars. Furthermore a positive
correlation between cylinder count, weight and displacement can be
seen. The negative correlation between displacement and acceleration
is surprising, but can be explained by the fact that high-displacement
cars represent cars with a higher weight, which the increased horse-
power can not make up for.

These graphs also illustrate the strengths and weaknesses of the par-
allel coordinate method.

Advantages:

• The values of all variables can be determined exactly without any
ambiguities.

• Statistical properties of the dataset can be discovered easily.

• The distributions of the individual attributes over the entire
dataset can be seen directly. Spence [18] calls this “attribute vis-
ibility”.

• Consumption of space is only linear with the number of vari-
ables.

Disadvantages:

• The extraction of statistical information from the dataset is
highly dependent on the arrangement of axes. This can poten-
tially be remedied with automatic reordering methods, as pro-
posed by Peng et al. [16]. Despite these efforts, d(p− 1)/2e
(where the brackets represent the ceiling function) [20] permuta-
tions have to be examined for p dimensional data to visualize all
coordinate pairs.

• It is claimed in [1] that datasets with more than 5000 items are
likely to suffer from overdraw. This happens when the lines
of many datapoints cover the same area and the density can no
longer be estimated. This effect can be countered by drawing
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Fig. 3. Data from the car example visualized with star coordinates. (a)
exhibits five clusters. In (b) the origin axis has been reduced to reveal
that three clusters belong together.

the lines slighty transparently, as has been done in Figures 1(b),
2(a) and 2(b). However, with this rendering outliers are obscured
easily (see for example the cars with three cylinders in 2(a)).

• Examining a single datapoint is complicated (or impossible, de-
pending on the size of the dataset) without interactive tools. This
makes comparing individual entities difficult.

4.1.2 Star Coordinate Plots
Star coordinate plots were first introduced by Kandogan in 2000 [11].
Despite the similar name, they differ significantly from star glyph plots
(often just called star plots). Star plots [3] are similar to parallel coor-
dinate plots. Instead of a parallel arrangement, the axes are ordered in
a radial fashion (reminiscent of a star). The datapoints are then drawn
as closed polygons with the vertices on the coordinate axes.

Star coordinate plots on the other hand are quite different. The basic
principle of arranging axes in a star-like fashion remains. However,
each axis is interpreted as a vector of unit length in euclidian R2. Data
is then represented as points, by using the following method: First, all
variables are normalized to unit scale. Then, for each p-dimensional
datapoint, the normalized value of a variable is multiplied with the
associated vector. The resulting p vectors are accumulated and the
final result is rendered.

In contrast to parallel coordinate plots, the position of points in a
star coordinate system are ambigious. Consider the example of a point
sharing similar values on two axes pointing in opposites directions.
The contributions to the final position cancel each other out and the
user cannot determine the actual magnitude of the values.

Figure 3(a) shows the car example data visualized with star coor-
dinates. The graph reveals the existance of five clusters (A-E) in the
dataset. To further analyze the dataset, Kandogan added interaction
techniques to the visualization. The most fundamental of these is the
scaling of axes by changing the length of the vector representing a
specific variable. In Figure 3(b) this transformation has been applied
to give the origin vector a length of 0.1. As a result, the clusters A-
C merged. This suggests that clusters A, B and C represent different
countries of origin. Because D and E are unaffected by the transfor-
mation, they can be expected to be clusters of different engine config-
urations, originating from the same country.

Advantages:

• Representation of data as points generates little overdraw.

• Clustering and correlations of variables can be discovered easily
with the application of the interative tools.

Disadvantages:

• Representation of data is ambiguous. Without the interactive ex-
tensions, the values of a single datapoint can not be determined.
Furthermore, apparent clusters and correlations can be illusions
caused by hidden attributes. Again, properties of a dataset can
not be reliably deducted from a single view.

• Discovery of correlations potentially requires enabling and dis-
abling of a number of axes in a similar magnitude as the permu-
tations of parallel coordinates.

4.2 Extensive rendering techniques
The techniques listed here use various method to represent the p-
dimensional points of the data. The common characteristic is the loca-
tion of the structures representing the data points no longer necessarily
encodes the values of the data points.

4.2.1 Hierarchical techniques

Hierarchical techniques work by imposing a hierarchy on the data at-
tributes and using it in the rendering process. The following two tech-
niques have been grouped in this category because of their similarity.
Despite the fact that the resulting images look quite different, the un-
derlying algorithms are similar.

LeBlanc et al. [15] proposed a hierarchical technique called “di-
mensional stacking”. The method is restricted to data in which each
dimension only consists of a finite set of values. This can be achieved
by applying a binning process to continuous variables. Furthermore,
the technique is based on the assumption that each datapoint in p-
space is assigned a value, which means that the dataset is effectively
a sampling of an function of p parameters. The data is rendered in
the following way: First, dimensions of the data d1, d2 are assigned
to the axes of the screen space. If the cardinality of the dimensions is
less than the resolution of the display device (which is required by the
technique), the discrete values divide the screen space into a grid of
rectangles. Each of these rectangles has a specific value of the dimen-
sions d1 and d2 assigned to each of its axes. This method can then be
applied recursively until all dimensions are assigned. All but the outer
two dimensions are repeated in the subdivided spaces. The frequency
of the repetition depends on the order in which the dimensions are
assigned. Dimensions divided early are therefore designated “slow”,
whereas the dimensions divided later are called “fast”.

Figure 4(a) shows a rendering of the dataset from the car example.
For the sake of simplicity, origin and modelyear were removed. All
other dimensions were divided into two bins. Horizontal dimensions
(slowest to fastes) are mileage, displacement and weight. Vertical di-
mensions are cylinders, horsepower and acceleration. The cluster in
the lower left shows low-displacement, high-mileage cars. The cluster
in the upper left is cars with a higher number of cylinders and a low
mileage. However, the remaining structure represents all other cars in
the dataset, without a very clear structure. As can be seen, even with
the applied reductions of complexity, the emerging patterns are hard
to interpret.

The main advantage of dimensional stacking is its efficient usage of
space. There is no overdraw under any circumstances. However, there
are also some disadvantages:

• The method works best only with datasets with a high number of
datapoints.

• The resulting visualization highly depends on the speeds the user
assigns to the variables. Again, a large number of permutations
must potentially be sampled.

• The necessary binning process hides information (unless the car-
dinality of all variables is low enough to make binning obsolete).

“Worlds within worlds”, introduced in 1990 by Feiner and Besh-
ers [7] used a similar recursive subdivision of space. However, it
extends the concept to a three-dimensional user interface. This user
interface consists of a stereoscopic display and an input device called
DataGlove. This is a wearable device with a magnetic sensor detect-
ing position and orientation of the wearer’s hand. Furthermore, it can
detect the position of each finger, allowing the user to execute compli-
cated gestures.

The main goal of this technique, like dimensional stacking, is the vi-
sualization of hypervariate functions, as opposed to mere point clouds.
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Fig. 4. (a) Dimensional stacking of the car example created with xmdv-
tool [19]. (b): Six views of a function with Worlds within worlds [7]

The basic structure of “Worlds within worlds” is a cube. This is anal-
ogous to the screen space divided in dimensional stacking. Again, two
of the axes of the cube are assigned a variable. All other variables are
fixed to certain values. The function can then be evaluated and its re-
sult drawn on the third axis of the cube. This procedure eliminates the
information from the fixed variables. It is therefore added back in a
controlled fashion. The cube containing the graph is embedded into a
larger cube. This cube has three of the fixed variables assigned to its
axes. Using the DataGlove the user can move the embedded cube. The
position inside the larger cube determines the values of the fixed vari-
ables. This allows the user to interactively explore the dataset in many
dimensions. Embedding can performed until all variables have been
represented. It is also possible to embed several views in the same
group, allowing the user to compare two graphs with different param-
eters. Further interaction possibilities include rotation of the cubes to
view the graph from different angles.

Figure 4(b) illustrates this: It shows the plot of a function for six
different values of the fixed variable.

Advantages:

• The three-dimensional user interface requires less dimensional
reduction than two-dimensional techniques.

• The use of the DataGlove allows the user to work in the three-
dimensional representation very intuitively.

Disadvantages:

• This method requires highly specialized interface devices (Data-
Glove and stereoscopic display). It seems therefore unlikely that
this method will gain widespread use very soon.

• The method is designed for multi-dimensional, continuous func-
tions. However, in most information visualization problems, data
exists as discrete point clouds.

4.2.2 Pixel-oriented techniques
The common idea of pixel-oriented technique is that each pixel of the
display represents one data value. Because of the high resolution of
modern displays, very large datasets can be visualized.

One such method is “Circle Segments”, introduced by Ankerst et al.
[1]. Circle segments renders p-dimensional data in the following way:
First, the rendering space is divided into p equiangular segments. This
means that only data with at least three dimensions can be visualized
with circle segments (otherwise the segments would not be triangular).
Each of these segments represents one data dimension. The data points
are then rendered by following a drawline through the segments. This
line starts in the center of the display. It is advanced one pixel at a
time perpendicular to the line that halves the segment. For each pixel,
a data value is visualized according to some coloring scheme. When
the drawline hits the border of a segment, it is advanced outwards by
one pixel and the direction is reversed.

Because of this iterative rendering, the sorting of the data is cru-
cial. If the data points were rendered in a random order, each segment
could be expected to contain noise, which makes it hard to gain insight
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Fig. 5. Circle segments renderings of car example data. Left: Sorted by
model year. Right: Sorted by horsepower

into the data. The data therefore has to be sorted. This can either hap-
pen implicitely (for example by gathering the data in a chronological
fashion) or explicitely (by sorting it based on a given dimension). The
segment by which the dataset is sorted exhibits a smooth (depending
on its cardinality) gradient in the rendering. Dimensions that are posi-
tively correlated will show (approximately, depending on the strength
of the correlation) the same gradient. Negatively correlated dimen-
sions will show the inverse gradient.

Ankerst et al. [1] used stock market data to compare circle segments
to traditional line graphs. This data consists of the prices of fifty stocks
recorded at approximately 5000 points in time. The line graph of the
data was created by using the horizontal axis for time and the vertical
axis for price and drawing 50 lines into this coordinate system. This
exposes two problems: Firstly, most screens are not wide enough to
represent the 5000 points in time, which means that values have to be
discarded or averaged, resulting in a loss of information. Secondly,
rendering 50 lines in a single coordinate system causes overdraw and
makes it very hard to distinguish the different stocks.

With circle segments however, most screens offer enough resolution
to render all data values. Furthermore, no overdraw happens. These
two facts mean that data is rendered without loss of information.

Figure 5(a) shows a rendering of the car example. It is originally
sorted by modelyear (as can be seen by the smooth gradient in the
modelyear segment). From this view few properties of the dataset
can be deducted, illustrating the importance of the sorting of the data.
There appears to be a slightly positive correlation with mileage and a
negative one with horsepower. This means that there might be a trend
towards more environmentally friendly cars.

Figure 5(b) shows the same dataset, but sorted by horsepower. The
inverse correlation with modelyear is visible again and now a lot more
information is visible. There appear to be positive correlations with
weight, displacement and cylinders. The surprising negative correla-
tion with acceleration already mentioned in 4.1.1 shows up as well.
Finally, it can be seen that the top 10% horsepower cars come from
origin 1 (US).

These examples illustrate the advantages and disadvantages of the
circle segments technique.

Advantages:

• Analyzing correlations is intuitive in circle segments.

• The example from [1] shows that circle segments are a good tech-
nique for visualizing datasets with many (> 1000) points and
(> 10) dimensions.

Disadvantages:

• In comparison to other techniques, circle segments has even
more options for arranging the data. For one, the assignment of
dimensions to the segments can be changed. This is analogous
to for example parallel coordinates. Furthermore, the ordering
of the dataself is crucial to the information discovery process. It
might therefore be required to examine a multitude of different
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Fig. 6. Vote data visualized by trees and castles. [14] 6(a): Tree method.
6(b): Castle method.

dimensional and data orders, which is only feasible in an inter-
active environment.

• Evaluating the properties of a single datapoint or direct compar-
ison of two points is impossible. This is caused by the fact that
the values of a single datapoint are spread over the six segments
and it is not possible to visually identify the pixels belonging to
one point. This is a weakness of all pixel-based techniques.

• Extracting the exact value of a datapoint from the coloring of a
pixel is impossible.

• Datasets need to be ordered in some way or contain at least one
attribute which defines a natural ordering.

4.2.3 Iconographic techniques
Iconographic visualization techniques work by representing each point
of a dataset as a symbol, the properties of which carry the information.

One example for this class of techniques is “trees and castles” cre-
ated by Kleiner and Hartigan [14]. A problem all methods discussed
so far suffer from, is the fact that the user has to decide how to order
the data. Kleiner and Hartigan proposed to solve this by generating
the visualization based on an automatically calculated clustering of
the variables. They suggested usage of a method called complete link-
age, which works as follows: The distance of all pairs of variables
is determined by an euclidian measure. The two variables closest to
each other form the first cluster. The distance of a cluster and a vari-
able is defined as the maximum distance between any variable in the
cluster and that variable. Successively the two closest clusters and/or
variables are merged until all variables are grouped.

This process creates a tree graph (in the mathematical sense of the
word) where the leaves represent variables and the nodes represent
clusters of increasing size (towards the root). This tree graph is then
used as the basis for two different rendering methods. The first method
(“trees”) renders the datapoints as actual trees. The method begins
by rendering the root of the graph as the stem. The graph is then
traversed and nodes further down are rendered as branches emerging
from the stem. The information of the variables is encoded in the width
and length of the branches. The width is proportional to the number
of variables above a branch, while the length is proportional to the
average value of all variables above a branch.

The second method (“castles”) is similar to a bargraph. The vari-
ables are arranged in the same order as their appearance in the leaves
of the tree graph. The tree graph is then rendered, similar to the pre-
vious method, using the following template: All “branches” have zero
angle. Each branch ends at a distance v from the bottom of the graph.
v is the minimum value of all variables above the branch, minus a fac-
tor q∗d. q is the number of branches between the current branch and
the smallest variable. d is an abitrary treshold value. The result is a
set of bars, were the height of each bar corresponds to the value of one
variable. Furthermore, the structure of the tree graph can be seen by
the dividing lines between the bars.

Figures 6 illustrates both techniques with the same dataset. It con-
tains the percentage of republican votes in six US states in the years

1932, 1936, 1940, 1960, 1964 and 1968. Both methods show that the
results in the first three states are quite similar. Furthermore, the ex-
ceptionally high republican result in 1964 in the last three states can
be detected.

Overall, several advantages and drawbacks emerge.
Advantages:

• The clustering of the variables is directly visible in the structure
of the glyphs.

• The overall structure of the trees can still be compared with a
large number of variables.

• The user does not have to decide how to arrange the variables.

Disadvantages:

• All iconographic techniques require large amounts of space for
a single datapoint. Aside from the space requirements, the dis-
play quickly gets confusing for larger number of points (¿10).
Therefore, only small datasets can be visualized.

• The correlations between variables cannot be analyzed in detail.

• The comparison of individual values is difficult for the trees ren-
dering method, even within the same tree.

4.2.4 Integration of human interaction
Some of the problems of hypervariate information visualization can be
solved by allowing the user interactively manipulate the representation
of the data. One method designed around this paradigm is “dust &
magnet”, invented by Yi et al. with the goal of creating an “easy-to-
learn and easy-to-use” [21] visualization method. The basic rendering
technique can be compared to star coordinates (see 4.1.2). The main
similarity is that data is represented as points which are called “dust”.
The concept of coordinate axes is abandoned. Instead, dimensions are
represented through the metaphor of magnets.

After loading a dataset, all points of dust are in the center of the
screen, occluding each other. The magnets representing the data at-
tributes can be placed on the display by the user via dragging and
dropping. The dust is then attracted to the magnets. The strength of
the attraction is defined by the relative value of the variable assigned
to the magnet. In contrast to a real magnet, the attraction does not
depend on the distance of points to the magnet. A physically accu-
rate behaviour would result in all datapoints sticking to the magnet
beyond a certain distance. Furthermore, the attraction does not apply
an acceleration to the dust as a real magnet would, but instead applies
a constant speed. To allow the user to view a stable snapshot of the
system, the dust is only animated when one of the magnets is dragged
with the mouse. When several magnets are on the screen, all of them
attract the dust particles at the same time. The direction of travel of
the dust is calculated by vector summation of the “attraction vectors”
of the magnets. This is again a similarity to star coordinate plots.

The fundamental feature which is different from the methods dis-
cussed before is that dust & magnet is essentially designed with user
interaction in mind. By arranging the magnets on the screen, a wide
variety of analyzation tasks can be accomplished. For example, when
the magnets are arranged in a circular fashion, dust & magnet effec-
tively emulates star coordinate plots. Another possibility is arranging
the magnets of desirable and undesirable attributes in opposite direc-
tions. As a result, the datapoints separate, with the points conforming
to the desirable attributes moving towards that magnet. Another pos-
sibility is to move magnets for desirable attributes into one half of
the screen and those undesirable ones in the other. The individual at-
tributes can then be spaced out evenly. This way, an even more detailed
selection can be performed and it is possible to rank the desirable at-
tributes. A tradeoff between attributes can then be achieved. This is
illustrated in the paper by the example of selecting a suitable breakfast
cereal.

Aside from these basic interactions, dust & magnet provides further
options for customizing the visualization. The overall strength of each



magnet can be adjusted. This is the equivalent of adding a weighting
to the dimension this magnet. For each magnet a repellent treshold
can be defined. Dust particles with an attribute value below this tresh-
old are repelled from the magnet instead of being attracted. The data
can be filtered by defining ranges for attributes. Datapoints with val-
ues outside these ranges are not displayed. Lastly, the information of
attributes can be encoded in the size and/or color of the dust particles.

However, two problems occur in the visualization: Occlusion of
datapoints and lack of reproducability. Occlusion occurs because in
after loading a dataset, all datapoints are in the center of the screen.
Furthermore, similar datapoints will form groups in similar locations,
especially in large datasets. In this situation, it is difficult to distinguish
the points and to estimate the number of points in a cluster. To solve
this, the authors have implemented a mechanism called “shaking” the
dust. This functionality gradually spreads out the dust over the course
of several invocations.

Another problem is reproducability. The user will move magnets
and add new ones, adjust their strenghts, shake the dust and more be-
fore arriving at a solution for her visualization problem. It is hard to
recreate these steps to achieve the same result. To solve this, two so-
lutions were implemented: The “center dust” feature will move the
dust back to center of the screen. The “attract dust” feature allows the
user run the simulation without dragging the magnets. The dust then
moves according to its attraction to the magnets, but only for a very
short distance.

Overall, dust & magnet exhibits the following strengths and weak-
nesses.

Advantages:

• Dust & magnet allows easy and iterative approach to selecting
datapoints from a dataset. The criteria for this selection need not
be accurately defined, but can rather be developed interactively.

• The usage of a metaphor makes the basic principle of the tech-
nique easily comprehensible. The underlying mechanics are sim-
ilar to star coordinate plots. However, those require the user to
understand basic vector math. In contrast, dust & magnet only
requires playful experience with the behaviour of magnets. This
makes dust & magnet a well suited technique for everyday deci-
sion making of people without experience in information visual-
ization.

Disadvantages:

• Occlusion of dust requires a manual operation (apply “shake
dust”) to resolve.

• The features for supporting reproducability need to be improved.
Even when the dust is centered, complicated movements of the
magnets will be hard to reproduce. The inclusion of a recording
feature would be a valuable addition. This feature would allow
the user to recall the simulation and magnet movements and re-
play it or allow others to comprehend the process leading to the
presented results.

• Dust & magnet is not very well suited for statistical analysis of
data. In the user study presented in the paper, one task was to
decide whether there was a correlation between two variables of
a dataset. Only 50% of the participants were able to answer this
correctly.

5 EVALUATION OF DIFFERENT TECHNIQUES

All methods mentioned before are viable options for visualizing data.
Some of them seem to perform better than others, depending on the
type of data being analyzed.

However, few user studies were conducted to evaluate the proposed
visualizations. The only one appeared in [21] and was performed with
a small group of only 6 participants. Furthermore, the authors did not
provide a quantified assessment of the technique. To quote Kleiner
and Hartigan: “We have not carried out any formal psychological ex-
periments, although the results of such experiments could be useful in

comparing techniques and for suggesting modifications of techniques.
We are far from knowing what makes a good picture.” [14]

Keim et al. claimed that “until we develop a basis for evaluation, we
will not be able to get beyond this current demonstrational stage” [13].
As a foundation for such an evaluation, they proposed a method for
generating test data with predefined properties. This poses a problem:
Visualization techniques are used to discover structure in the data, but
there is no precise definition of what structure in general even means.
However, in the field of statistics, such exact definitions exist. There-
fore, the introduced method is restricted to such statistical data. The
proposed technique distinguishes between dimensions which have a
natural order and can be organized in dense linear arrays and those
that are unordered. The user can then define the number of dimen-
sions and the number of arrays. For example, by setting the number of
dimensions to three and the number of arrays to two, one could create
a simulation of image data.

Furthermore, the value ranges and distributions of each dimension
can be specified. The correlations between dimensions are defined
through functional dependencies. That means that the values of a de-
pendant dimension are created by applying a perturbation on the val-
ues of the independent dimension. In this fashion, any kind of linear
or non-linear correlation can be simulated. Furthermore, rectangular
regions for which these data generation parameters apply can be de-
fined. By creating such regions, the user can simulate clusters in the
data.

These controls allow the creation of datasets with known and ad-
justable parameters. Such datasets are a fundamental requirement for
precise evaluation of visualization techniques. For example, one could
gradually change a parameter of the dataset and determine the minimal
value for which this parameter is noticed by the users. The result is a
measure for the sensitivity of a method for a certain characteristic.

However, Keim et al. left providing an actual methodology for eval-
uating visualization techniques as future work. A first approach to
defining an actual metric for visualization methods was presented by
Grinstein et al. [9]. This metric measures three properties of a visual-
ization method: [9]

• Given an n-dimensional space, the intrinsic dimension is the
largest integer k for which all vectors in a set of k “unit vectors”
[9] can be uniquely identified in the visualization. What is meant
with the slighty imprecise wording “unit vectors” is the set of
vector of the form (0, ...,1,0,0). That is, the vectors defining the
coordinate axes of the n-space.

For example, in a two-dimensional scatterplot, all unit vectors
are mapped to the screen coordinates (0,0), (1,0) or (0,1). If
n > 3, only (1,0) and (0,1) uniquely identify a vector, giving an
intrinsic dimension of two.

• The intrinsic record ratio is defined as k/n. n is again the di-
mensionality of the underlying space. The set of p binary vectors
is the set of 2p p-dimensional vectors for which each component
is either 0 or 1. k is the largest value for which all 2n binary
vectors can be identified in the n-dimensional space [9]. This
statement is somewhat obscure, as the second part does not de-
pend on k in any way.

The intrinsic record ratio of a two-dimensional scatterplot is 4/2n

since only the four vectors (0,0), (1,0), (0,1) and (1,1) can be
identified.

• The intrinsic coordinate dimension is the largest k for which k
coordinates of any vector in the given n-space can be determined.

The intrinsic coordinate dimension of a two-dimensional scatter-
plot is two, since only the dimensions on the axes of the plot can
be determined.

These metrics can be applied to almost all visualization techniques.
For techniques using color to encode values, the intrinsic coordinate
dimension can not be determined. However, the authors did not dis-
cuss how the results of these metrics translate into fitness of a method



for a specific application. For the techniques tested by the authors,
the measures mostly assumed their extreme values [9]. This further
complicates ranking of different methods.

6 CONCLUSION

Users can nowadays choose from a very wide range of visualization
methods. However, finding the “right tool for the job” is still mostly
intuition. The same is true for the creation of new methods. All of this
could change with the advent of accurate metrics and testing method-
ologies for visualiziation techniques. Nevertheless, I believe that the
human mind will remain at the center of qualitative information pro-
cessing. This means however, that an evaluation of a visualization
method will have to take account of this human factor. To achieve
this, one either has to perform user studies or would need access to an
extensive model of human cognition. Since such a model is not likely
to be developed very soon, reliable classification of techniques will
require large user studies. These studies are complicated and expen-
sive though and will thus remain reserved for only the most popular of
methods.
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