Sara Streng
Media Informatics, Department for Computer Science
Ludwig-Maximilians-Universität, Munich

Effects of display types on collaborative processes

19.03.2010
Agenda

Preparatory lecture

1. Types of display (environments)

2. Effects on collaborative processes

3. Choosing the right technology for specific learning scenarios

Task for today’s breakout session

4. Designing a collaborative learning application for “Structured Academic Controversies”
Motivation: The „Digital Advantage“

- Well designed computer applications can be as easy to use as pen and paper (often they are not)
- Digital advantage:
 - Process of visualize large chunks of information
 - Simultaneously editable documents
 - Easy to make copies
 - Efficient search and history functions
 - Over-distance learning
 - ...
- If a computer application performs as good as pen and paper this is already a good result!
Personal vs. Shared Displays

Personal devices
- Brought in by participants
- E.g. laptops

Shared display
- Stationary
- E.g. smartboard, tabletop display, ...
Private vs. Personal vs. Shared Information

- **Visibility**

<table>
<thead>
<tr>
<th>Information</th>
<th>Private</th>
<th>Personal</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal display</td>
<td>Mobile phones</td>
<td>Laptops (sitting face-to-face / right angle)</td>
<td>TabletPC</td>
</tr>
<tr>
<td>Symbiotic displays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared display</td>
<td>LumiSight</td>
<td></td>
<td>Workspaces</td>
</tr>
</tbody>
</table>
Private Information on Shared Displays

Symbiotic displays (Berger et al., 2005)

Using shutter glasses (Shoemaker & Inkpen, 2001)

LumiSight (Matsushita et al., 2005)
Single Display Groupware (SDG)

Shared Workspace

Personal Workspaces

Hybrid

Personal Workspace

Shared Workspace

Personal Workspace

Personal Workspace

Personal Workspace

Personal Workspace

Personal Workspace

Personal Workspace
Multi-Display Environments and Distributed Applications

Shared Workspace

Display 1

Display 2

Multi-display interaction techniques

Shared Workspace

Personal Workspace

Personal display

Personal display

Shared display

Personal display

Multi-display interaction techniques

Shared Workspace

Personal Workspace

Shared display

Personal display

Personal display

Personal display
Single Display Groupware vs. Multi Display Environments

Single display groupware (SDG)
- One shared display
- Output is visible to all users
- Challenge:
 - What about personal data?
 - Conflicts caused by simultaneous actions
 \(\rightarrow\) coordination policies

Multi Display Environments (MDE)
- Multiple connected displays
- Objects can be moved across displays
- Goal of MDEs:
 workspace spans over multiple displays
- Distributed applications:
 separate workspaces that interact with each other
Summary (Display Types)

- Personal vs. shared **displays**
 - any combination possible
- Private, personal and shared **information**

- **Workspaces**
 - Personal workspaces on shared displays
 - Workspaces can stretch across multiple (physical displays)
Agenda

1. Types of display (environments)
2. Effects on collaborative processes
3. Choosing the right technology for specific learning scenarios
4. Designing a collaborative learning application for “Structured Academic Controversies”
Display Angle: Vertical or horizontal interactive displays?

- Semi-experimental, semi-naturalistic study
- Groups of three
- Chairs were arranged next to each other
- Problem-solving task
- Horizontal condition:
 - More role switches
 - More ideas explored
 - Greater awareness

<table>
<thead>
<tr>
<th>Condition</th>
<th># role changes</th>
<th># suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interactor</td>
<td>Itinerary writer</td>
</tr>
<tr>
<td>PC (Control)</td>
<td>1.4 (0.66)</td>
<td>0.4 (0.84)</td>
</tr>
<tr>
<td>Horizontal</td>
<td>4.8 (2.48)</td>
<td>0.1 (0.32)</td>
</tr>
<tr>
<td>Vertical</td>
<td>2.5 (2.12)</td>
<td>0</td>
</tr>
</tbody>
</table>

Rogers & Lindley, 2004
Display Angle, Size, Number and User Arrangement

- Set of coordinated, exploratory studies
- Problem solving task (sightseeing route)
- In each study a single display factor was varied:

<table>
<thead>
<tr>
<th>Display Factor</th>
<th>Display Angle</th>
<th>User Arrangement</th>
<th>Display Size</th>
<th>Number of Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Angle</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Display Size</td>
<td>Large (33")</td>
<td>Large (33")</td>
<td>Small (17")</td>
<td>Large (33")</td>
</tr>
<tr>
<td>Number of Displays</td>
<td>Single shared</td>
<td>Single shared</td>
<td>Single shared</td>
<td>Multiple (one per user)</td>
</tr>
</tbody>
</table>

Inkpen et al., 2005
Effect of the Display Angle

Horizontal
- More natural
- More comfortable
- More pointing gestures

Vertical
- More ergonomic difficulties
 - Arm fatigue
 - Difficulty writing
 - Back stiffness
- Time efficient working
 (“more focused on getting the task done”)
- Less preparatory comments

Users’ preferences

Inkpen et al., 2005
Effect of the User Arrangement

Face-to-Face
- More partner gaze
- Less ergonomic difficulties

Side-by-side
- Shared perspective
- Little space (e.g. for using the writing arm)
- More obstructed view
- Less equitable distribution of activity

Right angle
- Compromise

Inkpen et al., 2005
Effect of the Number of Displays

Sharing one display

- Sat closer together
- More on-task communication
- Participants felt they were more efficient
- Enables to discuss and share ideas

Multiple display

- Attention shifts between own and partner’s display
- 1/3 of all pairs only used one of the displays → emulated the single display condition
- Supports the ability to work independent
- Accommodates different working styles
- Enjoyable to work in “one’s own space”

Inkpen et al., 2005

Users’ preferences
Entry Points

- Entry points invite participation
- Experiment with 3 conditions
 1. Laptop (most constrained)
 2. Multi-touch tabletop
 3. Physical-digital setup with tangible entry points (least constrained)
- Collaborative design task (idea generation, planning, decision-making, …)

Rogers et al., 2009
Results of Rogers et al.’s Study

Laptop
- More conversation (more verbalizing due to only one point of access)

Tabletop
- Faster completion

Physical-digital
- More equitable participation in terms of verbal utterances
- Participants who spoke the least → most physical actions → possible for more reticent members to utilize the tangible entry points

Rogers et al., 2009
MultiSpace

- Multi-device environment
- Tabletop display as central hub
- Electronic content can be moved between tables and other devices.

- Focus group with teaching assistants (TAs)
- Frequent tasks:
 - Scheduling
 - Creating an exam
 - Grading

Everitt et al., 2006.
Informal Observations of the MultiSpace

- **Tabletops**
 - More democratic collaboration
 - On the wall group control rarely changed

- **Different devices for different tasks**
 - Tabletop for layout and organization tasks (e.g. sort exam questions)
 - Wall was used for comparison tasks: People often sent documents to the wall as a first step in collaboration...

- **Task parallelism**
 - Easy way to switch between parallel tasks and collaborative work

- **Supportive collaboration**
 - Trouble on wall or tabletop → colleagues helped immediately
 - Trouble on laptop or tabletPC → no help

Everitt et al., 2006.
Summary (Effects on Collaboration)

Different display types have different effects on collaborative processes

- **Tabletops**
 - Eye contact
 - Balanced participation
 - Orientation problem

- **Wall displays**
 - Same perspective
 - Used for presentations, discussions, comparisons, overviews

- **Personal displays**
 - People often appreciate “one’s own space”
 - Private information
Agenda

1. Types of display (environments)
2. Effects on collaborative processes
3. Choosing the right technology for specific learning scenarios
4. Designing a collaborative learning application for “Structured Academic Controversies”
Examples of Collaboration Scripts and Technological Solutions

ArgueTable

Practicing text comprehension in pairs

Note&Share

↑ Practicing text comprehension in pairs

↓ ArgueTable

↑ Note&Share
Example 1: ArgueTable

- Argumentation sequences:

- Constructing single arguments:
Why Did We Choose a Tabletop Display?

Because tabletop displays …

- … encourage eye contact → support natural face-to-face communication
- … are ideal for small group collaboration with balanced participation

Problems:
- Orientation
- Text input
Example II: The MURDER Script

- Acronym for Mood, Understanding, Recall, Detection, Elaboration, Review
- Script for practicing text comprehension in pairs, originally developed for pen&paper \[1\]

![Diagram of the MURDER script]

[1] Dansereau et al., 1979
“Minimal” User Interface Design

- Idea: Select few GUI elements carefully
 - Guide the learner’s activities
 - Minimize usability problems

- GUI elements:
 - Text (markings)
 - Keyword list

- Interaction techniques:
 1. Marking
 2. Drag&drop
Step-by-Step Introduction of New GUI Elements

- GUI is gradually expanded
- Max. 2 new GUI elements per step:
Why Did We Choose a Personal Displays (Laptops)?

- Summarizer and Listener are adversary roles
- In phases 1 – 3 the learners are acting as student vs. teacher → not supposed to see adversary’s notes and keywords
- Only in phase 4 they act in concert
- Notebooks are frequently available in classrooms anyway
- Easy rearrangement between phases

Problems:
- In phase 4 both learners need to share one laptop
Example III : Note&Share

- Facilitate knowledge sharing:
 1. **Note**: Individually create keywords (laptops)
 2. **Share**: Transfer keywords to smartboard (gateway interaction technique)
Why Did We Choose Both (Personal and Shared) Displays?

Laptops
- Individual phase
- Avoid production blocking

Shared display
- Visualization of the group knowledge

Interaction between laptops and shared display
- Interaction technique allows to move information between the displays very intuitively

Problem
- Complex setup
Study Results and Observations (Note&Share)

- Hidden profile experiment
 - 3 conditions:
 1. Note&Share
 2. Whiteboard
 3. Pen&paper
 - Results:
 - More confidence in the solution
 - #shared arguments closest to the correct number → least “misunderstandings”
Summary – Things you should keep in mind for the following task

- Personal vs. shared displays
- Private, personal and shared workspaces

- Different display types have different effects on collaborative processes
 - Tabletops → eye contact, balanced participation (orientation problem)
 - Wall displays → same perspective, comparison/overview
 - Personal displays → “one’s own space”, private information

- Multi-display reaching techniques allow to easily move information across displays
 ⇒ Switch displays between phases
 ⇒ Use multiple displays simultaneously
Agenda

1. Types of display (environments)
2. Effects on collaborative processes
3. Choosing the right technology for specific learning scenarios
4. Designing a collaborative learning application for “Structured Academic Controversies” (SAC)

Preparatory lecture

Task for today’s breakout session
Design a collaborative learning application for the SAC Script

- Develop a concept, which describes how a “Structured Academic Controversy” (SAC) could be supported using technology.
- Create sketches or a paper prototype to describe your ideas.
- Your concept should answer the following questions:

<table>
<thead>
<tr>
<th>Benefit of technology</th>
<th>• What are potential benefits of using technologies in this learning scenario?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display environment</td>
<td>• Which display types are best suitable for this learning scenario?</td>
</tr>
<tr>
<td></td>
<td>• What are the factors that play a role in such a decision process?</td>
</tr>
<tr>
<td>User Interface</td>
<td>• How should the user interface look like in order to</td>
</tr>
<tr>
<td></td>
<td>• support the collaborative processes described in this collaboration script?</td>
</tr>
<tr>
<td></td>
<td>• guide the learners (make them stick to the script)?</td>
</tr>
</tbody>
</table>
Structured Academic Controversy Script

Collaboration script for 4 learners (2 dyads):

<table>
<thead>
<tr>
<th>Step</th>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pair building</td>
<td>Dyads are created and assigned to opposing positions on a specific topic. Learning material is distributed between the two pairs. Dyads are instructed to make any information in their own material available to the other dyad when it might support their position.</td>
</tr>
<tr>
<td>2</td>
<td>Positions</td>
<td>Pairs develop their position.</td>
</tr>
<tr>
<td>3</td>
<td>Presentation & Discussion</td>
<td>Pairs present their arguments to the other dyad. Exchange thoughts and information, possibly create counterarguments. Discussion.</td>
</tr>
<tr>
<td>4</td>
<td>Role switch</td>
<td>Positions are switched. Iteration of steps 2 and 3.</td>
</tr>
<tr>
<td>5</td>
<td>Synthesis</td>
<td>Positions are dropped and all four learners are instructed to seek a synthesis of their discussion by writing a joint position statement.</td>
</tr>
<tr>
<td>6</td>
<td>In class</td>
<td>Position is to be presented to the class later on.</td>
</tr>
</tbody>
</table>
Which Types of Displays are Suitable in Which Phases?

- Do learners need a personal workspace (e.g. in an initial reading phase)?
- Wall or Table?
 - For pairs
 - For groups of four

- Tradeoff:

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most suitable display per phase</td>
<td>+ Ideal for each step</td>
<td>- Overhead between phases</td>
</tr>
<tr>
<td>One display across phases</td>
<td>+ No handovers</td>
<td>- Unsuitable for some phases?</td>
</tr>
</tbody>
</table>
Literature

