3. Multidimensional Information Visualization I
Concepts for visualizing univariate to hypervariate data

Vorlesung „Informationsvisualisierung”
Prof. Dr. Andreas Butz, WS 2009/10
Konzept und Basis für Folien: Thorsten Büring
Outline

• Reference model and data terminology
• Visualizing data with < 4 variables
• Visualizing multivariable data
 – Geometric transformation
 – Glyphs
 – Pixel-based
 – Dimensional Stacking
 – Downscaling of dimensions
• Case studies: support for exploring multidimensional data
 – Rank-by-feature
 – Value & relation display
 – Dust & magnet
• Clutter reduction techniques
Information Visualization

• The use of computer-supported, interactive, visual representations of abstract data to amplify cognition (Card et al. 1999)
• How to construct interactive visual representations?
• Reference Model for Visualization

Card et al. 1999
Data Table

- **Cases (observations)**
- **Variables (aka attributes)**
- **Example car data set**
 - 406 cases
 - 8 variables for each case
- **Metadata**
 - Descriptive information about the data
 - Units, e.g. lbs., mph, inches
 - Constraints, e.g. if \(\text{var}_1 \) is ’41’, then \(\text{var}_7 \) can only be ’11’ or ‘3’
 - Data types

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cylinders</th>
<th>engine displ.</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>prod. year</th>
<th>origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevrolet C. M.</td>
<td>18</td>
<td>8</td>
<td>307</td>
<td>130</td>
<td>3504</td>
<td>12</td>
<td>70</td>
<td>USA</td>
</tr>
<tr>
<td>Datsun PL510</td>
<td>27</td>
<td>4</td>
<td>97</td>
<td>88</td>
<td>2130</td>
<td>14,5</td>
<td>70</td>
<td>Asia</td>
</tr>
<tr>
<td>Audi 100 LS</td>
<td>24</td>
<td>4</td>
<td>107</td>
<td>90</td>
<td>2430</td>
<td>14,5</td>
<td>70</td>
<td>Europe</td>
</tr>
</tbody>
</table>

...
Dimensionality of Data

• On how many variables was a data case measured?
• 1 variable – Univariate
• 2 variables – Bivariate
• 3 variables – Trivariate
• Above 3 variables – Hypervariate aka multivariate aka multivariable data
• Visualizations that encode multivariable data are called multidimensional visualizations
• Visualizing multivariable data is one of the most challenging tasks in Information Visualization
Data Types

• Nominal (categorical)
 – Unordered set
 – Operators: =, ≠
 – Example: car origin (Europe, USA, Asia)

• Ordinal
 – Possess a natural order
 – Operators: <, >
 – Example: ratings, school grades

• Quantitative
 – Allow for arithmetic operations
 – Operators: *, /, +, -
 – Example: acceleration in seconds

• Also subtypes exist: e.g., quantitative geographic (geographic coordinates), quantitative time
Data Transformation

- Transformation of raw data into data tables can involve loss or gain of information
 - Classing: quantitative to ordinal data by dividing values into ranges, e.g. acceleration into <slow, medium, fast>
 - Nominal to ordinal data by sorting the values lexicographically
 - Derived values e.g., calculating statistical summaries (mean, median...)
 - Derived structures (e.g. sorting cases and / or variables)
 - Sampling (determining a representative subset of the data set)
 - Aggregation of data (e.g. determining frequencies)
- Deal with errors, missing values and duplicates
Objectives of Visual Structures

• Various mappings possible

• Quality factors of mapping
 – Expressiveness - all and only the data in the data table are represented in the structure
 – Increased effectiveness compared to another mapping
 • Faster to interpret
 • Can convey more distinctions
 • Leads to fewer errors in interpretation
 • See previous lecture on perception!

Card et al. 1999
Univariate Data

Plot

Boxplot

Bargram

Histogram

Line graph - not very reasonable in this case
Frequency Distribution Analysis

Images from Field & Hole 2003
Interactive Bargrams

- InfoZoom Viewer – free download
Bivariate Data

- Most common for displaying bivariate data is the scatterplot.
- Each spatial dimension is assigned a (usually quantitative) axis variable.
- Cases are mapped to a spatial position according to the data values for the axes.
- Users can easily identify global trends, local trade-offs, outliers …
- Potential problems?
Scatterplot Analysis

- No relationship
- Strong linear (positive correlation)
- Homoscedastic

- Exact linear (positive correlation)
- Strong linear (negative correlation)
- Heteroscedastic

Scatterplot Analysis

Quadratic relationship

Exponential relationship

Sinusoidal relationship (damped)

Outlier

Time-Based Bivariate Data

• Plot of time series
 – X-axis represents time
 – Y-axis a function of time

• Closing prices of 1,430 individual stocks across 52 weeks

TimeSearcher, Hochheiser & Shneiderman 2004
Time Map

 - X-axis: month
 - Y-axis: years and weekdays (Sunday to Saturday)
 - 4 categories of ozone concentration mapped to distinct colors

- Reveals seasonal patterns
 - Ozone levels are much higher in summer months
 - High ozone days have steadily decreased

- How could this visualization be improved?

Image taken from Mintz et al. 1997
Geographic Bivariate Data

• Size of each territory shows relative proportion of the world population living there
• Potential problem with this visualization?

Image taken from worldmapper.org
Distorted Map with Comparison Map

Image taken from Spence 2007
Trivariate Data

- Tempting: map each variable to each dimension of a 3D scatterplot
- Occlusion of points with different positions
- Problem with static representation?
Scatterplot Matrix

- Matrix of all pairwise scatterplot views of the data
- Easy to understand by using familiar and powerful scatterplot representation
- Can serve as a good starting point for data exploration
- Increased demand for display space
- Increased cognitive load caused by redundant data

Cleveland 1993
Trivariate Data

- 2D scatterplot with additional encoding
- In this case color and shape
- Shows relationship between three variables
- For color / shape coding: assumes categorical variable or classing of quantitative variable
 - pot. loss of information
Geometric Transformations

• Idea: present projections of the multidimensional data to find interesting correlations

• Most common techniques
 – Scatterplot matrix
 – Prosection matrix
 – Parallel coordinates plot
Scatterplot Matrix

- Scatterplot matrix can be scaled to > 3 variables
- Number of scatterplots increases rapidly
- n variables means n x n plots
- Diagonal maps the same variable twice
- Each pair is plotted twice, once on each side of the diagonal
- Allows convenient sequential browsing of one variable compared to all other variables
Prosection Matrix

- Scatterplot matrix with interactive linking and brushing (Tweedie & Spence 1996)
- Projection of a section of parameter space
- User select multivariable ranges, which are colored differently
Prosection Matrix
Parallel Coordinate Plot

- One vertical axis for each variable
- Every case is represented by a line
- Line intersects each of the vertical axis at the point corresponding to the attribute value of the case
- Popular visualization technique
- Complexity (number of axes) is directly proportional to the number of attributes (comp. scatterplot matrix)
- All attributes receive uniform treatment
- Potential problems of this visualization?

Inselberg 1997
Parallel Coordinate Plot

Angular Brushing of Extended Parallel Coordinates

H. Hauser, F. Ledermann, H. Doleisch

VRVis Research Center,
http://www.VRVis.at/vis/
Parallel Coordinate Plot

- Bendix et al. 2005: Parallel Sets
- Parallel coordinates for categorical data
- Substitute individual data points by a frequency-based representation
- Any problems with this visualization?

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>crew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (s)</td>
<td>141</td>
<td>93</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>Female (d)</td>
<td>4</td>
<td>13</td>
<td>106</td>
<td>20</td>
</tr>
<tr>
<td>Male (s)</td>
<td>62</td>
<td>25</td>
<td>98</td>
<td>670</td>
</tr>
<tr>
<td>Male (d)</td>
<td>118</td>
<td>154</td>
<td>422</td>
<td>192</td>
</tr>
</tbody>
</table>
3D Parallel Coordinates

- Parallel 2D planes instead of vertical axes

http://www-vis.lbl.gov/Events/SC05/Drosophilia/index.html
Parallel Coordinate Plot

• Try it out
 – XmdvTool http://davis.wpi.edu/%7Exmdv/index.html
 – Parvis http://home.subnet.at/flo/mv/parvis/index.html
Geometric Transformations

• Advantages
 – Users’ familiarity with scatterplots (scatterplot matrix)
 – 2D patterns can easily be identified

• Disadvantages
 – Rather limited scalability
 • Number of cases (Parallel Coordinate Plot)
 • Number of dimensions (scatterplot matrix)
 – Overplotting and overlap
 – Labeling (Parallel Coordinates)
Glyph-Based Visualizations

• Glyph-based techniques
 – Star glyph
 – Chernoff faces
 – Stick-figure
 – Shape coding
 – Color icons

• Glyph: small-sized visual symbol
 – Variables are encoded as properties of glyph
 – Each case is represented by a single glyph
Star glyphs

- Coekin 1996
- Radial axes with equal angles
- Each axis represents a variable
- Each spoke encodes a variable’s value
- May also be overlaid for better comparison

Chernoff Faces

- Chernoff 1973
- Humans are sensitive to a wide range of facial characteristics (e.g., eye size, length of a nose, etc.)
- 18 characteristics to encode data by stylized faces
- Positive evaluation results (Spence & Parr 1991)
- Some facial features seem to be able to carry more information than others (Morris et al. 1999; De Soete 1986)
Stick-Figure Icons

- Pickett & Grinstein 1998
- Each case is represented by a stick figure
- Two attributes are mapped to XY position of the glyph
- Remaining dimensions are mapped to the angle and/or length of the 4 limbs
- When icons are densely packed a texture appears
- Texture pattern reveals characteristics of the data space
- Different members of stick-figure family for conveying different types of data structures
Stick-Figure Icons

- Stick-figure example
- Census data showing age (y), income (x), education, salary, language, marital status etc.
- Gender is encoded by two stick-figure families

Grinstein et al. 1989
Shape Coding

- Beddow 1990
- Each case is drawn as a glyph containing a rectangular grid
- Each grid cell represents one attribute
- Attribute value is encoded with gray scales
- Glyphs are positioned in a line, columns or encoded dimensions
- Highly compressed visualization without clutter and overlap (compare to stick figures)
- Identification of promising patterns
Shape Coding

- Attribute values encoded by white, grey, black
- 13 Variables gained from magnetosphere and solar wind data
- Includes one time variable (hour/day), which has been mapped to x/y
Color icons

• Levkowitz 1991, Keim & Kriegel 1994
• Shape coding with a focus on colors
• Arrangement is query-dependent (e.g., spiral: most relevant glyph is centered)
• What about compressing the visualization even more by using 1-pixel representations?
• Problem: users need at least 2x2 pixel per data value + pixels for borders to distinguish between the elements of the visualization
• This is different to pixel-based techniques, which will be discussed in the next lecture
Keim 1994
Glyph-Based Visualizations

• Advantages
 – Provide holistic overview of the information space
 – Exploit the human powerful ability of perceiving (texture) patterns and human face characteristics (Chernoff)
 – Direct metaphor of Chernoff-face-like icons (e.g. houses) may prove to be intuitive for novice users

• Disadvantages
 – Glyphs must be learned
 – Only suitable for small to medium data sets
 – Stick figures give a rather broad overview and may be difficult to interpret
 – Mappings may introduce biases in interpretation (e.g. the head shape of a Chernoff-face may be easier to perceive and compare than length of nose)