7 Electronic Payment Systems

7.1 Traditional Payment Systems
7.2 Credit-Card Based Payment Standards
7.3 Electronic Cash and Micropayments
7.4 Practice of E- and M-Payment

Literature:

Thomas Lammer (Hrsg.): Handbuch E-Money, E-Payment & M-Payment, Physica-Verlag 2006
A Brief History of Cash Money

• Direct exchange of goods
 – Problematic since “double coincidence of wants” is required

• Commodity payment
 – Exchange with goods of well-known value (e.g. corn, salt, gold)
 – Leading to gold and silver coins

• Commodity standard
 – Tokens (e.g. paper notes) which are backed by deposits of the issuer

• Fiat money
 – Assuming a highly stable economy and government
 – Tokens no longer (or not fully) backed by deposits
 – Trust in the issuer replaces deposits

• Cash is used for 80% of all financial transactions
 – Cash is not free of transaction costs!
 – Replacement of coins/notes paid out of taxes
Forms of Payment

• Cash
• Cheques
 – Using “clearing house” between banks
• Giro, direct credit transfer (Überweisung), direct debit (Lastschrift)
 – Requires “clearing house”, today fully automated (“Automated Clearing House ACH”)
• Wire transfer
• Payment cards (cost usually borne by the merchant):
 – Credit card
 » Associated with credit promise from bank
 – Charge card
 » Requires full settlement of bill each month
 – Debit card
 » Card used to initiate an immediate direct debit
Customer Preferences in Non-Cash Payment

<table>
<thead>
<tr>
<th>Country</th>
<th>Cheques</th>
<th>Credit Transfer</th>
<th>Payment Cards</th>
<th>Direct Debit</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>69.3 %</td>
<td>3.7 %</td>
<td>25.0 %</td>
<td>2.0 %</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.8 %</td>
<td>46.1 %</td>
<td>22.9 %</td>
<td>28.1 %</td>
</tr>
<tr>
<td>UK</td>
<td>34.5 %</td>
<td>18.5 %</td>
<td>29.3 %</td>
<td>17.7 %</td>
</tr>
<tr>
<td>Germany</td>
<td>5.7 %</td>
<td>50.1 %</td>
<td>4.6 %</td>
<td>42.6 %</td>
</tr>
<tr>
<td>Turkey</td>
<td>(6.9 %)</td>
<td>(2.6 %)</td>
<td>(83.9 %)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Cheques</th>
<th>Credit Transfer</th>
<th>Payment Cards (+ e-money cards)</th>
<th>Direct Debit</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>53.5 %</td>
<td>5.0 %</td>
<td>38.3 %</td>
<td>3.1 %</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.2 %</td>
<td>38.2 %</td>
<td>32.4 % + 1.0 %</td>
<td>28.2 %</td>
</tr>
<tr>
<td>UK</td>
<td>23.5 %</td>
<td>17.7 %</td>
<td>39.0 %</td>
<td>19.7 %</td>
</tr>
<tr>
<td>Germany</td>
<td>2.3 %</td>
<td>49.8 %</td>
<td>11.3 % + 0.2 %</td>
<td>36.4 %</td>
</tr>
<tr>
<td>Turkey</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

2001
7 Electronic Payment Systems

7.1 Traditional Payment Systems
7.2 Credit-Card Based Payment Standards
7.3 Electronic Cash and Micropayments
7.4 Practice of E- and M-Payment

Literature:

Thomas Lammer (Hrsg.): Handbuch E-Money, E-Payment & M-Payment, Physica-Verlag 2006
Credit Card MOTO Transactions

- MOTO = Mail Order/Telephone Order
- Transactions without physical co-location of buyer and merchant
- Special rules:
 - Additional information
 » Address
 » Card security code
 - Often: Matching of delivery address and credit card billing address
- Extremely popular form of online payment
 - Data transfer secured by SSL, i.e. hybrid symmetric/asymmetric cryptosystem
- Disadvantages:
 - Many possibilities for fraud
 - Anonymity of customer not possible
 - High transaction cost – difficult for small amounts
SET

• SET = Secure Electronic Transactions
 – Standard by Visa and MasterCard 1996
 – Today almost without significance (after attempt to revive it in 1999)
 – But still a model for a thorough way to deal with the problem
• Scope restricted to authorization of credit card payments
 – No actual funds transfer
• Focus on trust model and authorization
 – Using public/private key cryptosystem
• Complex (three volumes specification)
 – But safe against all major risks
• Special PKI: All participants have to obtain (X.509) certificates
 – “Brand Certification Authority” (MasterCard/Visa)
 – Geopolitical Authority (optional)
 – Cardholder/Merchant/Payment CA
SET Initialization

- Initialization (PInitReq):
 - Cardholder to Merchant
 - Contains: Brand of card, list of certificates, “challenge” (to ensure freshness)

- Initialization Response (PInitRes):
 - Merchant to Cardholder
 - Contains: Transaction ID, response to challenge, certificates, “merchant challenge”

- Roles:
 - Cardholder (Buyer)
 - Merchant (Seller)
 - “Acquirer” (essentially credit card organization)
 - Operating a “payment gateway”
Dual Signatures

- General concept:
 - Alice wants to send Message 1 to Bob and Message 2 to Carol, and she wants to assure Bob and Carol that the respective other message exists
 - To Bob she sends Message 1 and Digest 2
 - To Carol she sends Message 2 and Digest 1
SET Purchase

- Purchase Order (PReq):
 - Cardholder to Merchant
 - Order Information (OI):
 » Identifies order description at the merchant
 » Contains response to merchant challenge
 » Includes random information ("nonce") for protection against dictionary attacks
 - Payment instructions (PI):
 » Card data, purchase amount, hash of order, transaction ID
 » Payment instructions are *encrypted* with acquirer’s public key (merchant cannot read it)
 » “Extra strong” encryption by using RSA (and not DES, for instance)
 - Dual signature for OI going to Merchant and PI going to Acquirer
SET Purchase Request Data

CardData
- CC#
- Expiry
- Nonces

Order
- Description
- Amount

PIData
- TransactionID
- Hash(Order)
- Amount
- Card Data (extra encrypted)

OIData
- TransactionID
- BrandID
- Date
- Challenges

...
SET Authorization

• Authorization Request (AuthReq)
 – Merchant to Acquirer
 – Encrypted with Acquirer’s public key
 – Signed with Merchant’s secret key
• Contains: TransactionID, amount, Hash(Order), Hash(OIData), PIData, merchant details, cardholder billing address
 – Hash(Order) contained twice
 » from merchant directly
 » as part of PIData (encrypted, e.g. just forwarded from cardholder)
 – Can be used to verify that cardholder and merchant have agreed on order details
• Authorization Response (AuthRes)
 – Acquirer to Merchant
 – Contains: TransactionID, authorization code, amount, data, capture token (to be used for actual funds transfer)
7 Electronic Payment Systems

7.1 Traditional Payment Systems
7.2 Credit-Card Based Payment Standards
7.3 Electronic Cash and Micropayments
7.4 Practice of E- and M-Payment

Literature:

Electronic Cash

• Many attempts have been made to transfer the advantages of cash money to digital transactions:
 – Acceptability independent of transaction amount
 – Guaranteed payment – no risk of later cancellation
 – No transaction charges
 » no authorization, no respective communications traffic
 – Anonymity

• There does not exist an electronic system which captures all of the above attributes!
 – But there are interesting approximations...
DigiCash / Ecash

- DigiCash (David Chaum)
 - Dutch/U.S. company, 1992

- Ecash
 - Electronic equivalent of cash, developed by DigiCash
 - Fully anonymous using cryptographic techniques

- History:
 - 1995: Mark Twain Bank, Missouri, started issuing real Ecash dollar coins
 - 1998: DigiCash bankruptcy
 - Relaunch as “eCash Technologies”
 - 2002: eCash Technologies taken over by InfoSpace
 » Mainly to acquire valuable patents

- Ecash still an interesting model for electronic cash
Ecash Model

- **Ecash Bank**
 - Withdraw/deposit coins
 - Deposit coins
 - Validity indication

- **Client Wallet**
 - New coins, statement
 - "cyberwallet"

- **Merchant Software**
 - Pay with coins
 - Goods

Transactions
- Withdraw/Deposit coins
- Pay with coins
- New coins, statement
- Deposit coins
- Validity indication

Usage
- Pay for goods
- Manage coins
Minting Electronic Coins

• Each coin has a serial number
 – Serial number is generated by a client’s “cyberwallet” software
 – Randomly chosen, large enough to avoid frequent duplicates (e.g. 100 bits)
• Coins, respectively their serial numbers, are signed by the bank
 – Bank does not know the serial number through “blinding” (see next slide)
 – Bank is not able to trace which coins are given to which person
• Bank uses different keys for different coin values
 – E.g. 5-cent, 10-cent, 50-cent signatures
• Contents of an electronic coin:
 – Serial number SN
 – Key version (can be used to obtain value, currency, expiry date)
 – Signature: F(SN), encrypted with one of the bank’s secret keys
 » Where F computes a hash code of SN and adds some redundant information – to avoid forging of coins
Blinding

• General concept:
• Alice wants Bob to sign a message without Bob seeing the content.
• Analogy: Envelope with message and a sheet of carbon paper
 – Signature on the outside of the envelope goes through to the contained message
• Procedure:
 – Blinding achieved by multiplication with random value (*blinding factor*)
 – Alice sends multiplied (blinded) message $B(M)$ to Bob
 – Bob signs blinded message: $\text{Sign}_{\text{Bob}}(B(M))$
 – Signature function and blinding (multiplication) are *commutative*:
 » $\text{Sign}_X(B(M)) = B(\text{Sign}_X(M))$
 – Alice de-blinds message (by division with blinding factor)
 – The resulting message is $\text{Sign}_{\text{Bob}}(M)$, indistinguishable from a message directly signed by Bob
Avoiding Forged Coins

- Assuming the function F was omitted
 - Coin contains serial number SN in plaintext
 - Signature is just $\text{SK}_{S_1}(SN)$
- Forging a coin:
 - Choose a large random number R
 - Encrypt R with bank’s S_1 public key: $S = \text{PK}_{S_1}(R)$
 - Construct coins which contain S as serial number and R as signature
 - Now the coin can be verified (not distinguishable from real coin):
 \[
 \text{SK}_{S_1}(S) = \text{SK}_{S_1}(\text{PK}_{S_1}(R)) = R
 \]
 - Therefore introduction of function F in coin definition
Avoiding Double Spending

• E-Coins are just pieces of data which can be copied
 – How to avoid that the same coin is spent several times?
• Ecash solution:
 – Central database of *spent coins*
 – Merchants must have an online connection with the Ecash bank
 – Before accepting a coin: check whether it has been spent already
• Problem:
 – Database of spent coins can become a performance bottleneck
 – Offline trade with coins is impossible
An Ecash Purchase

- Client has Ecash coins stored in his cyberwallet
- Merchant receives an order from the client
- Merchant sends a *payment request* to the client’s cyberwallet
 - Amount, timestamp, order description, ...
- User is asked whether he/she wants to pay
- Coins for the (exact) amount are taken from wallet
 - There is no change with Ecash
 - Otherwise the merchant could record the serial numbers of his coins given to the client and try to identify the client
- Coins are encrypted with bank’s public key when sent to merchant
 - Merchant just forwards them but cannot read anything
- To prove the payment:
 - Client generates a secret and includes (a hash of) it into the payment info.
The Perfect Crime

Bruce Schneier:

• An anonymous kidnapper takes a hostage.
• Kidnapper prepares a large number of blinded coins and sends them to the bank as a ransom demand.
• Bank signs the coins to save the hostage.
• Kidnapper demands that the signed coins are published, e.g. in newspaper or television. Pickup cannot be traced. Nobody else can unblind the coins but the kidnapper.
• Kidnapper saves the blinded coins to his computer, unblinds them, and has a fortune in anonymous digital cash
• Hopefully, kidnapper releases the hostage...
Off-Line Coins

• Chaum/Pedersen 1992, Stefan Brands 1993:
 – Coins may consist of several parts
 – To use a coin in a payment transaction, one part of the coin must be revealed. Payer is not identified.
 – If the coin is used a second time, a second part of the coin is revealed – and the payer is identified.
 – This way, it is possible to trace double spendings after the fact, and to identify the origin of the double-spent coins.

• Algorithmic idea:
 – Identity I of user is encrypted with one-time random number P
 » Is part of coin
 – Special challenge-response system: Merchant asks client for answer on a random challenge and stores the results
 – As soon as the merchant has two results for different challenges, he can calculate the information required to decrypt the identity of the payer
Macropayments and Micropayments

• Systems described above were designed for “macropayments”
 – Minimum granularity 1 cent (penny, etc)
• Prices for services often quoted in smaller quantities
 – See petrol prices...
 – Hundredth or thousandth of cent
• Micropayment:
 – Payment technology suitable for very small amounts
• Problem:
 – Transaction overhead from macropayment systems larger than value
• Advantage:
 – Losing an electronic micro-coin is not a serious damage
• Light-weight, fast, scalable protocols
• Historic pioneer: Millicent project (1995)
 – Digital Equipment Corporation (taken over by Compaq, now part of HP)
 – Key innovations: Brokers intermediating between vendors and scrip
 (digital cash valid only for a specific vendor)
MicroMint

- Developed by Ron Rivest and Adi Shamir (1996) (similar: PayWord)
- Idea:
 - Signing of e-coins by bank is computationally too expensive
 - Make it computationally difficult for everybody else but a broker to mint valid coins
 - Make it quick and efficient for everybody to verify a coin
 - No check for double spending

User → Broker (mints coins) → Vendor
Buy coins → New coins for any vendor
Spend coins → Purchased information
Redeem coins at end of day
k-Way Hash Collisions

- MicroMint coin is a *k-way hash collision function*
- One-way hash function:
 \[H(x) = y \]
- Hash function collision:
 \[H(x_1) = H(x_2) = y \]
 - It is computationally hard to generate two values that map to the same value
- *k*-way hash function collision:
 - *k* different input values map to the same output value
- MicroMint coin (4-way hash collision):
 \[C = [x_1, x_2, x_3, x_4] \] such that the hash function gives the same value for all \(x_i \)
- Verifying a MicroMint coin:
 - Just check the hash function value for the four given values
Minting MicroMint Coins

- Length of x and y values restricted to a fixed number of bits
 - Assuming y values are n bits long
- Analogy: Throwing balls at 2^n bins
 - “Balls” generated at random
 - “Bins” represent y values
- Successfully minted coin:
 - 4 balls in one bin
- Difficult to mint first coin, further coins much quicker
Preventing Forgery with MicroMint

- Special hardware:
 - Broker can gain speed advantage over attackers
- Short coin validity period:
 - Coins do not live more than a month
- Early minting:
 - Coins are minted a month or more before distribution – speed advantage
- Coin validity criterion:
 - May be changed every month, e.g. the used hash function
- Different bins:
 - Broker may remember the unused bins for the month and use them to detect forged coins
- ...
7 Electronic Payment Systems

7.1 Traditional Payment Systems
7.2 Credit-Card Based Payment Standards
7.3 Electronic Cash and Micropayments
7.4 Practice of E- and M-Payment

Literature:

Thomas Lammer (Hrsg.): Handbuch E-Money, E-Payment & M-Payment, Physica-Verlag 2006
Payment Service Providers

• Nowadays, many users apparently have learned to trust encrypted transmission over the Internet
 – Problem: Confidential data (e.g. credit card number, bank account) still known to merchant

• Solutions:
 – Build up high-trust merchant brands (e.g. Amazon)
 – Use independent third parties as payment service provider
 » Examples: FirstGate/ClickAndBuy, PayPal

• Payment service provider:
 – Establishes account with user, keeps confidential data away from merchant
 – Provides easy tools for merchants to integrate payment functions into Web shops
 – Accumulates small payments to monthly bills
Forms of Payment in E-Commerce

• Pre-paid
 – Hardware-based (Geldkarte)
 – Software-based
 » Anonymous (paysafecard, T-Pay MicroMoney)
 » Registered (WEB.Cent)
• Pay-now
 – Cash on delivery (Nachnahme)
 – Direct debit, debit card
 – Online credit transfer (eps, sofortueberweisung)
• Pay later
 – Credit transfer after delivery, Credit card
 – Accumulative billing (ClickAndBuy, T-Pay)
 – M-Payments (paybox etc.)
Mobile Network Based Payment Systems (M-Payment)

• Example PayBox (www.paybox.net)
 – Registration with Payment Service Provider (paybox) – Customer obtains PIN
 – Payment request in E-Commerce or M-Commerce applications
 – Payment Service Provider calls back on mobile phone
 – Customer confirms payment by entering PIN
 – Confirmation by email/SMS
 – Mobile phone bill is not used for money transfer

• Add-on services:
 – Online credit transfer
 – User-to-user credit transfer via mobile phone

• Paybox company in Germany: Business closed 2003
 – Some success in Austria (www.paybox.at)
 – Company taken over by Sybase in 2008
Payment through Phone Bill

- Example T-Pay (Deutsche Telekom)
 - Billing data of phone bills are kept up to date
 - No additional bill for customer
 - Suitable for small amounts
Near-Range Radio-Based Payment

• Radio Frequency Identification (RFID)
 – Usually embedded in SmartCards
• RFID-based contactless payment
 – E.g. Sony FeliCa
• Special versions embedded in mobile phones
 – E.g. NTT DoCoMo variant of FeliCa
• Leads to a solution where cryptographically protected (hardware) wallet is embedded into network end system
Banner Advertising

- Advertising is often used as a form of payment on the Web
- Information services on the Web can be financed by advertising income
- Typical billing schemes for advertisers:
 - Page impression: Banner is put one time in front of a Web user
 - CPM: Cost per thousand (Roman 1,000 sign) page impressions
 - CPC: Cost per click
- Actual cost varies, depending on market situation