Incremental Personalized Trip Planning

Supervisor: Yaxi Chen
Responsible Professor: Prof. Dr. Andreas Butz
Introduction

- **Motivation**
 - Increasing popularity of Recommender Systems
 - Complexity of trip planning process
 - Pre-defined travel packages do not meet the explorative experience of trip planning
 - Current systems do not support the tourist’s dynamically changing preferences

- **Topic of the Thesis**
 - Design of an interactive trip planning system
 - Efficient combination of human interaction and system intelligence
 - Explore travelers‘ behavior in their trip planning
Overview

• Related Work

• Tourists‘ Requirements

• SARA: Stepwise Advanced Route Advisor

• System Implementation

• User Study

• Outlook
Related Work

- On-Tour Guides with Mobile Devices
 - Information is provided based on the user's current location
 - Examples: Cyberguide [Abowd, 1997], GUIDE [Cheverst, 2000], MyMap [Carolis, 2007]

- Pre-Visit Trip Planning Systems
 - Generation of textual-based trip plans
 - A) Manual trip plan generation
 - Examples: Yahoo! Travel [2009], LonelyPlanet [2009], Realtravel [2009]
 - B) Automatic trip plan generation
Elicitation of the Users‘ Requirements

- Primary Studies
 - Expert interview with a travel agent
 - Online survey with 100 participants

- Design Guidelines
 - Combination of human interaction and system intelligence
 - Considering multiple constraints
 - Dynamic behavior of tourists‘ preferences
 - Decomposition of the planning process
 - Importance of system transparency
 - Provide an enjoyable planning experience
• SARA (Stepwise Advanced Route Advisor)
 - Construction of an executable tour plan for the city to visit
 - Concept of incremental trip planning

• Features of SARA
 - Dynamic user preferences
 - Considering multiple constraints
 (opening times, user preferences, distance and popularity)
 - Representation of trip plan via route and calendar

• Demo Video
System Implementation

- System Architecture
 - MySQL DB: stores data from different sources
 - Sources: Yahoo! Travel, Google Maps
 - Data: Opening Times, Popularity, Distances,...

- Recommendation Algorithm
 - Computation of recommendation scores for all sights available

\[
\text{recommendationScore}(\text{sight}_i) = \text{popularityWeight} \cdot \frac{\text{sight}_i, \text{popularity}}{\text{maximumPopularity}} + (100 - \text{popularityWeight}) \cdot \left(1 - \frac{\text{sight}_i, \text{distance}}{\text{maximumDistance}}\right)
\]
Three System Modes

- No recommendations mode
 - System makes no explicit recommendations for next sight
 - User constructs trip plan manually

- Local recommendations mode
 - System makes recommendations for next sight
 - User makes final decision of each sight to be included in the plan

- Global recommendations mode
 - System generates the whole plan automatically (based on a greedy algorithm)
 - User can then make adjustments of this plan
• **Goals**
 - Evaluate the overall impression of SARA
 - Investigate the appropriate degree of automation

• **Design**
 - Repeated measures within participants factorial design
 - Task: Generate a two-days trip plan in the city of Munich with each system mode

• **Participants**
 - 21 participants (10 male, 11 female), average age: 24 (mostly students)
 - Trip planning experience: 3.19, Munich experience: 3.67
• Visualization components
 • Advantage of single user interface
 • Usefulness of map view, calendar view, route and sight visualization

• Dynamic Preferences
 • Usefulness of sight preferences to control indirect recommendations
 • Usefulness of route preferences to control explicit recommendations

• Overall feedback
 • Enjoyment of explorative experience
 • Value of own decision-making
 • Transparency of recommendations
Comparison of System Modes

- **Usage Experience**
 - Especially less enjoyment and feeling in control in global mode

- **Time Efficiency**
 - Quantitative: no (8:08), global (8:35), local (8:47)
 - Qualitative: local (4.43), no (4.19), global (3.48)

- **Trip Plan Quality**
 - Quantitative: no (0.881), local (0.871), global (0.865)
 - Qualitative: no (3.95), local (3.90), global (3.86)

\[
\text{tripPlanQuality}(\text{tripPlan}) = \frac{\text{sightQuality}(\text{tripPlan}) + \text{routeQuality}(\text{tripPlan})}{2}
\]
• Gender Difference
 • Global: preferred by male participants
 • No: preferred by female participants
 → Females like to be in control over the trip planning process

• Trip Planning Experience Difference
 • Global: preferred by less experienced
 • No: preferred by more experienced
 → More experienced trip planners like to be in control over the trip planning process
• Summary
 • Incremental trip planning seems to be appealing
 • Explorative experience, dynamic user preferences and quick overview on information space need to be supported

• Future Work
 • Investigate the usability and learnability of SARA
 • Explore trip planning patterns
 • Enlarge the system for other cities
 • Add additional features (more flexibility, search function, other activities)
 • Integration of a learning algorithm
Thank you for your attention!
Trip Plan Quality

- Formula
 - Route Quality
 \[
 \text{routeQuality(tripPlan)} = \frac{\sum_{i=1}^{n} \text{sight}_i \cdot \text{duration}}{\sum_{i=1}^{n} \text{sight}_i \cdot \text{duration} + \sum_{i=1}^{n-1} \text{duration(sight}_i, \text{sight}_{i+1})}
 \]
 - Sight Quality
 \[
 \text{sightQuality(tripPlan)} = \cos(\alpha) = \frac{\text{\textbf{V}_u} \circ \text{\textbf{V}_t}}{||\text{\textbf{V}_u}|| \cdot ||\text{\textbf{V}_t}||}
 \]

- Example (Sight Quality)
 - Sight preferences: 80%, 20%, 100% \(\rightarrow\) \(\text{V}_u = (40\%, \ 10\%, \ 50\%)\)
 - Sights included: 3, 3, 6 \(\rightarrow\) \(\text{V}_t = (25\%, \ 25\%, \ 50\%)\)
 - Sight Quality: 0.945
Trip Plan Quality - qualitative

- no recommendations
- local recommendations
- global recommendations

Scores range from 1 to 5.
Differences in Mode Preference

Incremental Personalized Trip Planning System

Feeling in Control

Enjoyment

Feeling in Control

Ease of Use