5. Interaction with Visualizations
Dynamic linking, brushing and filtering in Information Visualization displays

Vorlesung „Informationsvisualisierung”
Prof. Dr. Andreas Butz, WS 20011/12
Konzept und Basis für Folien: Thorsten Büring
Outline

- InfoVis & Interaction
- Direct Manipulation (DM)
- Common Interaction Techniques
 - Brushing
 - Zooming & Panning
 - Dynamic Queries
- Attribute Explorer
- Brushing Histograms vs. DQ
- Dynamic Queries and Movable Filters
InfoVis & Interaction

• Information Visualization research: focus on finding novel visual representations

• Recently one can observe an increasing interest in interaction design, HCI models and evaluation as well as aesthetics

• HCI Interaction models help us to better understand the complex concepts of human-machine communication

• Norman’s execution-evaluation cycle (Norman 1988)
 – 1. Establishing the goal
 – 2. Forming the intention
 – 3. Specifying the action sequence
 – 4. Executing the interaction
 – 5. Perceiving the system state
 – 6. Interpreting the system state
 – 7. Evaluating the system state with respect to the goals and intentions
Simple Interaction Example

- Stacked histogram
 - how are the banana sales progressing???
 - http://www.hiraeth.com/alan/topics/vis/hist.html
Direct Manipulation (DM)

- Shneiderman 1982
- DM features
 - Visibility of the objects of interest
 - Incremental action at the interface with rapid feedback on all actions
 - Reversibility of all actions, so that users are encouraged to explore without penalties
 - Syntactic correctness of all actions, so that every user action is a legal operation
 - Replacement of complex command languages with actions to manipulate directly the visible objects
- DM does not only make interaction easier for novice users but fundamentally extends visualization capabilities
Common Interaction Techniques

• Details-on-demand
 – Provides improved scalability by displaying information about data case(s) on demand to the user
 – View may move from aggregation of objects to the elements contained

• Direct Walk
 – Linkage between cases
 – Exploring one case may lead to another (e.g. hyperlinks on news page)

• Manipulate View
 – Rearrange view (e.g. move view position, sorting items in a table)
 – Change representation (e.g. from histogram to scatterplot)

• Linking
 – Connection between multiple views of the same data space
 – Updating one view means updating all
Brushing

• Becker & Cleveland 1987
• A collection of dynamic methods for viewing multidimensional data
• Brush is an interactive interface tool to select / mark subsets of data in a single view, e.g. by sweeping a virtual brush across items of interest
• Given linked views (e.g. scatterplot matrix) the brushing can support the identification of correlations across multiple dimensions (brushing & linking)
• Usually used to visually filter data (via highlighting)
• Additional manipulation / operations may be performed on the subsets (masking, magnification, labeling etc.)
• Different types of brushes (Hauser et al. 2002))
 – Simple brush via sweeping
 – Composite brush: composed multiple single-axis brushes by the use of logical operators
 – Angular brush
 – Smooth brush
Brushing Example

- Brushing one dimension in parallel coordinates to highlight car data objects with 4 cylinders

Hauser et al. 2002
Brushing a parallel coordinate plot

Angular Brush

- Angular brush: brushing by specifying a slope range – highlight correlation and outliers between two dimensions

Hauser et al. 2002
Smooth Brush

- Non-binary brushing
- Degree-of-interest defined by distance to brushed range
- Decreasing degree is mapped to decreasing drawing intensity

Hauser et al. 2002
Another Brushing Example

• Example for composite (AND) brush in Parallel Coordinate Plot – find the cities with high wages, small prices and many paid holiday days

Correlation Patterns in Parallel Coordinates

- Var1-Var2 has no correlation; Var2-Var3 has very strong positive correlation; Var3-Var4 has very strong negative (inverse) correlation

http://www.evl.uic.edu/aej/526/kyoung/Training-parallelcoordinate.html 8-(now dead)
Zooming & Panning

• Moving from overview to detail: another way to filter data / focus on a subset of data
• Scale and translation of the viewport
• Geometrical versus semantic zooming
• Topic of a lecture to come (lecture 10: presentation I)

Furnas & Bederson 1995
Dynamic Queries

• Shneiderman 1994
• Explore and search databases
• SQL example: SELECT customer_id, customer_name, COUNT(order_id) as total FROM customers INNER JOIN orders ON customers.customer_id = orders.customer_id GROUP BY customer_id, customer_name HAVING COUNT(order_id) > 5 ORDER BY COUNT(order_id) DESC

• Problems
 – Takes time to learn
 – Takes time to formulate and reformulate
 – User must know what she is looking for – only exact matches
 – Lots of ways to fail
 – SQL error messages helpful?
 – Zero hits – what component is to be changed?
Dynamic Queries

• Based on Direct Manipulation (DM)

• DM principles with regard to Dynamic Queries
 – Visual presentation of the query’s components
 – Visual presentation of results
 – Rapid, incremental, and reversible control of the query
 – Selection by pointing, not typing
 – Immediate, continuous feedback

• Implementation approach
 – Graphical query formulation: Users formulate queries by adjusting sliders, pressing buttons, bounding box selection…
 – Search results displayed are continuously updated (< 100 ms)
Examples

• Visual representations of data to query?
• Some examples: geographic data, starfields, tables etc.

Shneiderman 1994
HomeFinder

• One of the first DQ interfaces
• Williamson & Shneiderman 1983(!)
FilmFinder

- Ahlberg & Shneiderman 1994
Dynamic Queries Online

- Online examples: http://immo.search.ch and diamond search (http://www.bluenile.com)
Dynamic Query Controls

- Check boxes and buttons (Nominal with low cardinality)
- Sliders and range slider (ordinal and quantitative data)
- Alphaslider (ordinal data) (Ahlberg & Shneiderman 1994)
 - Small-sized widget to search sorted lists
 - Online-text output
 - Two-tiled slider thumb for dragging operations with different granularities
 - Letter index visualizing the distribution of initial letters – jump to a position in the slider
 - Locating an items out of a list of 10,000 items ~ 28s for novice users
 - Pros and cons to text entry?
- Redesigned Alphaslider for PDAs / MP3 player - movie
- Extend data sliders with data visualization (Eick 1994)
DQ in current search interfaces

- DQ have become widespread with fast search algorithms and increased computing capacity
 - search happens while typing in search terms in google search
 - new routes are calculated while point is dragged in google maps
Summary Dynamic Queries

- Users can rapidly, safely playfully explore a data space – no false input possible
 - Users can rapidly generate new queries based on incidental learning
 - Visual representation of data supports data exploration
 - Analysis by continuously developing and testing hypotheses (detect clusters, outliers, trends in multivariate data)
 - Provides straightforward undo and reverting of actions

Potential problems with DQ as implemented in the FilmFinder?
Limit of query complexity – filters are always conjunctive
Performance is limited for very large data sets and client / server applications
Controls require valuable display space
Information is pruned
Only single range queries and single selection in the alphaslider
Dynamic Queries

- Starfield displays and Dynamic Queries provided the basis for SpotFire
- Christopher Ahlberg
 - 1991: Visiting student from Sweden at the HCIL University of Maryland
 - 1996: Founder of SpotFire
 - 2007: SpotFire was sold for 195 Mio. $
- Well done!
Attribute Explorer

- Tweedie et al. 1994
- Example for DQ, brushing & linking and fuzzy search
- Linked histograms to search and explore multivariate data
- Filtering data via range sliders
- Color-coding to highlight and discriminate data cases across views
- Sensitivity information: visualizes how well data cases meet the filter requirements
- Particularly useful for zero-hits situations

Spence 2004
Dynamic Queries and Movable Filters

- Fishkin and Stone 1995
- Dynamic Queries (DQ)
 - Disjunctive queries can only be performed by sequential querying
 - Effect of DQ is global – no way to limit filtering to only a portion of the data
 - Number of possible queries is fixed in advance
- Combine approach with magic lens filters
 - Arbitrarily-shaped region with an operator that manipulates the view of underlying objects
 - Filters are spatially bounded – global context is maintained
 - Filters that overlap compose their effects in the overlap region

Stone et al. 1994
Idea & Implementation

• Each lens acts as a filter that screens on some attribute of the data

• Lens components
 – Filtering function (what to filter)
 – Composition mode (how to combine the filter result with lenses underneath, i.e. AND, OR, NOT)

• Composition modes are implemented as buttons on the lens

• Grouping: Replace a stack of lenses by a single compound lens, which also has a composition mode

• Compound lenses may contain other compound lenses

• Boolean queries and grouping allow queries of arbitrary complexity

• Multiple concurrent queries on different portions of the data space
Simple Range Filter

- Example: US census data, each box represents a city (position mapped to physical location)
- Lens filter (Crime index 1999) covers the center of the country
- Slider to manipulate the value of the query
- Arrow buttons show the direction of the query, i.e. screen data for less than or greater than the slider value
- Red-coded cities pass the filter

Fishkin & Stone 1995
Composition Modes

- **AND** (conjunctive), **OR** (disjunctive)
- **SELF**: lens only displays the effect of its own filter; other lenses are ignored
- **NOP**: filter effect of lens is disabled

Fishkin & Stone 1995
Alternate Views

- Lenses to generate alternate views of the data
- Magnification, verbal description, sorted views etc.
- Cities listed without boxes are missing the value for the filter attribute (missing data)

Figure 2. Semantic filters can be augmented with visual filters. Here, a magnifying lens and a call-out lens show clumped cities while maintaining context elsewhere.

Fishkin & Stone 1995
Local Effects

• “Which cities in California and Texas have relatively low housing prices?”
• With Dynamic Queries we can filter data by global prices (range slider affecting the entire starfield)
• Problem: Houses on the west coast are typically more expensive than houses in the midwest!
• Movable filters allow for concurrent queries on the two areas

Figure 3. To find relatively high housing prices in California and Texas, two different filters are positioned simultaneously.

Fishkin & Stone 1995
Real-Valued Queries

• Assign a real valued score (range \([0\ldots1]\)) to each datum
 – Cases with a score of 0 fail the filter entirely
 – Cases with intermediate scores partly satisfy the filter
 – Cases with a score of 1 entirely satisfy the filter

• The higher the score the higher is the box filled with red color

Fishkin & Stone 1995

Figure 4(a) boolean query on crime rate for three cities in Texas.

Figure 4(b) Real-valued query on crime rate for the same cities. Extending our filters from boolean-valued to real-valued allows distinctions to be maintained.
Real-Valued Queries

- Real-valued query lens overlaid by a sorting lens

Figure 5. A sorting lens sorts cities by crime rate in Florida.

Fishkin & Stone 1995
Real-valued Composition Modes

• Real-valued composition modes and operators
 – MIN and MAX: work the same on 0.0 and 1.0 as AND and OR on 0 and 1, but can also incorporate values in-between
 – NOT: returns for each case 1.0 minus the case’s input value
 – Fuzzy logic operators: e.g. “very”, “somewhat”, “more or less”
 – Mathematical operators: e.g. difference, log

• Example
 – Is crime rate and poverty positively correlated?
 – One real-valued crime filter
 – One real-valued poverty filter - composition operator DIFF (absolute value of the difference between the two filter outputs)
 – VERY filter (where are the differences very different? Very(x) defined as x²)
 – NOT filter (where are the differences NOT very different?)
Dynamic Queries and Movable Filters

• Filter result: the redder the city, the greater the extent to which poverty and crime rates are NOT VERY DIFFerent – strong positive correlation between poverty and crime rate

Fishkin & Stone 1995
Dynamic Queries and Movable Filters

- Missing data is visualized by a special lens

Figure 6(a). A filter finds only one city (San Francisco) with a high score.

Figure 6(b). A missing data lens shows that attribute values are missing for many cities. Cities with missing data are marked with an 'X'.

Fishkin & Stone 1995
Additional Sources

- Lecture material CS 7450 John Stasko, 2006