MMI 2: Mobile Human-Computer Interaction Mobile Input and Output

> Prof. Dr. Michael Rohs michael.rohs@ifi.lmu.de Mobile Interaction Lab, LMU München

Review

- Was ist ein "information appliance"?
- Was sind die technologischen Grundlagen des "mobile computing"?
- Wer hat das Telefon erfunden?

Preview

- Input and output modalities for mobile devices
- Motor system
- Design space of input devices
- Text input for mobile devices
- Touch screen gestures
- (Display technologies)
- (Haptics and audio)

Lectures

#	Date	Торіс
1	19.10.2011	Introduction to Mobile Interaction, Mobile Device Platforms
2	26.10.2011	History of Mobile Interaction, Mobile Device Platforms
3	2.11.2011	Mobile Input and Output Technologies, Mobile Device Platforms
4	9.11.2011	Mobile Interaction Design Process
5	16.11.2011	Mobile Communication
6	23.11.2011	Location and Context
7	30.11.2011	Prototyping Mobile Applications
8	7.12.2011	Evaluation of Mobile Applications
9	14.12.2011	Visualization and Interaction Techniques for Small Displays
10	21.12.2011	Mobile Devices and Interactive Surfaces
11	11.1.2012	Camera-Based Mobile Interaction 1
12	18.1.2012	Camera-Based Mobile Interaction 2
13	25.1.2012	Sensor-Based Mobile Interaction 1
14	1.2.2012	Sensor-Based Mobile Interaction 2
15	8.2.2012	Exam

MOTOR SYSTEM

Components of Cognition

- Perception
 - Visual system
 - Auditory system
 - Haptic system
- Action
 - Motor system
- Memory
 - Sensory memory
 - Short-term memory / working memory
 - Long-term memory
- Skill acquisition

Adapted from: Wandmacher, Software Ergonomie

Motor Control

- Movement affects interaction with computers
 - Example: pressing a button in response to a question
- Movement time depends on age and fitness
- Speed vs. accuracy
 - Higher speed of movement reduces accuracy
 - Depends on skills (e.g. typists with lot of practice are faster and make fewer errors)

Motor System: Maximum Motor Output Rate

- Movement consists of micromovements of fixed duration
 - $T_{M} = 70 [30-100] ms$
 - Perceptual feedback loop takes longer (240 ms)
- Experiment: Move pen between lines as fast as possible for 5 sec.
- Open loop
 - Without perceptual control
 - 68 pen reversals in 5 sec
 - 74 ms per reversal
- Closed loop
 - Perceptual system controls
 - 20 corrections in 5 sec
 - 250 ms per correction

WS 2011/12

MMI 2: Mobile Interaction

Motor System: Fitts' Law

- Directed movement as an information processing task
 - Not limited by muscles, but by ability to process sensory input
- Index of difficulty (ID)
 - $ID = Iog_2(D / W + 1)$
 - MT = a + b * ID
- Paul Fitts' original experiments
 - Tapping, disk, and pin transfer
 - Influenced by Shannon's information theory $C = B \log_2((S+N) / N)$
- Robust performance model
 - Originally 1-D movements
 - Applies to 2-D movements

[Fitts, 1954]

Index of Performance or Throughput

- Fitts' thesis
 - Fixed information-transmission capacity of the motor system
- Tradeoff between speed and accuracy
 - cf. handwriting
 - Relates amplitude, movement speed, variability
- Movement generates information
 - ID = information (number of bits) required to specify movement (amplitude within given tolerance)

[Fitts, 1954]

- Index of performance
 - IP = ID / MT [bits / sec]

Visual (and Proprioceptive) Feedback Loop

- Assumptions: movement consists of multiple ballistic sub-movements of constant time t and constant error ε
- Deterministic iterative corrections model
 - Movements longer than 200 ms are controlled by visual feedback
 - Interpret constants *a* and *b* in terms of a visual feedback loop

observe hand position $\downarrow \tau_P = 100 \text{ ms}$ plan hand movement $\downarrow \tau_C = 70 \text{ ms}$ perform hand movement $\downarrow \tau_M = 70 \text{ ms}$ expected position error ϵ

Fitts' Law: Tapping Task

Determining the Index of Performance

- Draw graph with ID values on the x-axis and average MT values on the y-axis
- Perform a linear regression (e.g., spreadsheet program)
 MT = a + b ID
 - $ID = \log_2(D / W + 1)$
 - a = intercept
 - b = slope = 1 / IP
- IP depends on device and limb

THE DESIGN SPACE OF INPUT DEVICES

Input Devices

- "An input device is a transducer from the physical properties of the world into logical parameters of an application" (Card et al.)
- Interaction techniques combine input with feedback
 Control processes generally need feedback loop
- Input devices enable human-machine dialogues
 - Design of human-machine dialogue = design of artificial languages
 - Communicative intention \rightarrow movements \rightarrow application
 - Composition of primitive moves

Properties of Input Devices

- Property sensed (position, motion, force, etc.)
 - Absolute vs. relative sensing
 - Absolute sensing issue: nulling problem (physical position not in agreement with value set in software)
- Number of dimensions
 - 1D, 2D, 3D, 6D
- Indirect vs. direct
 - Indirect: input space and output space are separate
 - Direct: input space = output space
- Device acquisition time
- Control-to-display (C:D) ratio (speed vs. accuracy)
- Issues: clutching, lag, update rate

Generating the Design Space (Card et. al)

• Primitive movement vocabulary

	Linear	Rotary
Position		
Absolute	Position \mathbf{P}	Rotation ${f R}$
Relative	Movement \mathbf{dP}	Delta rotation dR
Force		
Absolute	Force F	${\rm Torque}\ {\bf T}$
\mathbf{R} elative	Delta force \mathbf{dF}	Delta torque \mathbf{dT}

Composition operators

- Merge composition: cross product
- Layout composition: collocation
- Connect composition: output \rightarrow input
- Design space of input devices
 - Possible combinations of composition operators with the primitive vocabulary

The Design Space of Input Devices (Card et. al)

 Set of possible combinations of composition operators with the primitive vocabulary

MMI 2: Mobile Interaction

Match Input Device to Task

- Use the space to evaluate devices
- Expressiveness
 - "The input conveys exactly and only the intended meaning"
 - Problematic if Out \rightarrow In do not match
 - Out \supset In: can input illegal values
 - $Out \subset In$: cannot input all legal values
 - Example: 3D position with touch screen
- Effectiveness
 - "The input conveys the intended meaning with felicity"
 - Pointing speed: device might be slower than unaided hand
 - Pointing precision: convenient selection of small target
 - Example: Augmented reality pointing

Speed of use depends on

Μ

- Human: bandwidth of muscle group to which input device attaches
- Application: precision requirements of the task
- Device: effective bandwidth of input device

Target	Size S^{a} (cm)	I_D (bits)	Mouse (ms)	Headmouse (ms)	Fingers (ms)
Paragraph ^b	5.5	1.18	113	280	30
Word ^c	2.3	2.24	220	540	56
Character ^d	0.41	4.59	440	1100	115
Period ^e	0.069	7.14	690	1710	179
ichael Rohs. LMU		MMI 2: Mot	oile Interaction	WS 2011/12	26

MOBILE TEXT ENTRY

Text Entry on Mobile Devices

• Mobile text entry is huge

Source: http://digitaldaily.allthingsd.com/20091008/ omfg-4-1-billion-text-messages-sent-every-day-in-us/

- SMS (117 million SMS/day in Germany, 2011; 2.5 bln. USA?)
- Twitter (80 million mobile users)
- Email, calendars, notes, passwords, etc.
- Small devices require alternative input methods
 - Smaller keyboards, stylus input, finger input, gestures
- Many text entry methods exist
 - Companies are ambitiously searching for improvements

Key-based

Finger-based

Dased Stylus-based

WS 2011/12

SMS and Twitter on Mobile Devices

- SMS
 - Average US teenager sends 3339 text messages a month (in 2010, Source: Mobile Future)
 - Texts per day: adults: 10, boys 14-17: 30, girls 14-17: 100 (Source: mashable.com/2010/08/17/text-messaging-infographic)
- Twitter
 - 80 million Twitter mobile users (2011, Source: realtimemarketer.com)
 - Mobile Twitter usage increases by 347% from 2009 to 2010 (Source: Mobile Future)
 - Twitter has 165 million users, 50% use Twitter mobile (April 2011, Source: www.digitalbuzzblog.com/2011-mobilestatistics-stats-facts-marketing-infographic/)

http://www.mobilefuture.org

Text Entry Speed on Mobile Devices

- Goal: High-speed entry at low error rates
 - Movement minimization
 - Low attention demand
 - Low cognitive demand
- Entry speeds depend on task type and practice
- Typical text entry speeds
 - Handwriting speeds: 13-22 words per minute (wpm)
 - Desktop touch typing: 60+ wpm
 - Soft (on-screen) keyboards:
 40+ wpm after lots of practice,
 typically 18-28 wpm for qwerty,
 5-7 wpm for unfamiliar layout

Keyboard Layouts for Mobile Devices

- Querty variations
 - Querty designed to prevent typing machines from jamming
 - · alternate between sides of the keyboard

Dvorak Keyboard

- Speed typing by
 - Maximizing home row (where fingers rest)
 - Alternate hand typing
- Most frequent letters and digraphs easiest to type

Fitaly and Opti Keyboards

- Designed for stylus input on on-screen keyboards
- Minimizing stylus movement during text entry
- Stylus movement for entering the ten most and least frequent digrams:

Half-Qwerty and ABC Keyboards

- Half-qwerty
 - One-handed operation
 - 30 wpm
- ABC keyboards
 - Familiar arrangement
 - Non-qwerty shape

Q_P,

Tab

Return

Shift

w_o

Ζ,

Е

Х

S

RU P

D

κ

С

, ⊤_γ⊮

J

V_M∎

F

G_H,

[∣] B_N,

Keyboard Layouts for Tablets

• Problem?

MMI 2: Mobile Interaction

Keyboard Layouts for Tablets

- Vorteile?
- Nachteile?

Michael Rohs, LMU

MMI 2: Mobile Interaction

WS 2011/12

Very Small Devices

• 5 keys (e.g., pager)

• 3 keys (e.g., watch)

Keyboards and Ambiguity

- Keyboard miniaturization: smaller keys, fewer keys
- Unambiguous keyboards
 - One key, one character
- Ambiguous keyboards
 - One key, many characters
 - Disambiguation methods (manually driven, semiautomatic)

Ambiguity

- Ambiguity occurs if fewer keys than symbols in the language
- Disambiguation needed to select intended letter from possibilities
- Typical example: Phone keypad

WS 2011/12

Unambiguous Keyboards

- One key, one character
- FasTap keyboard
 - Keys in space between keys
 - 9.3 wpm

FastTap keyboard

Ambiguous Keyboards

- One key, many characters
- Standard 12-button phone keyboard, larger variants

Twiddler, chord keyboard

Nokia N73

Blackberry 7100

Michael Rohs, LMU

MMI 2: Mobile Interaction

Manual Disambiguation

- Consecutive disambiguation
 - Press key, then disambiguate
 - Example: Multitap
 - Disambiguating presses on same key (timeout or timeout kill)
- Concurrent disambiguation
 - Disambiguate while pressing key (via tilting or chord)
 - Example: Tilting
 - Tilt in a certain direction while pressing
 - Example: Chord-keyboard on rear of device
 - Not widely used

Disambiguation by Multitap

RUNNER = 7778866n6633777 RUN NE R SUMMER = 7777886n633777 SUM ME R STONES = 77778666N66337777 ST O NE S

"n" = next character on key

TiltType, Univ. Washington

- Text input method for watches or pagers
- Press and hold button while tilting device
- 9 tilting directions (corners + edges)
- Buttons select to character set

Kurt Partridge et al.: TiltType: Accelerometer-Supported Text Entry for Very Small Devices. UIST 2002 technote portolano.cs.washington.edu/projects/tilttype

Michael Rohs, LMU

MMI 2: Mobile Interaction

Dictionary-Based Disambiguation (T9)

$$\begin{bmatrix} 7 \\ PQRS \end{bmatrix} \begin{bmatrix} 8 \\ TUV \end{bmatrix} \begin{bmatrix} 6 \\ MNO \end{bmatrix} \begin{bmatrix} 6 \\ MNO \end{bmatrix} \begin{bmatrix} 3 \\ DEF \end{bmatrix} \begin{bmatrix} 7 \\ PQRS \end{bmatrix}$$

- Term frequency RUNNER = 786637nn stored in dictionary RUNNE R
- Most frequent possibility presented first
- "n" = key for next frequent possibility

RUNNER = 786637nnRUNNE R SUMMER = 786637SUMMER STONES = 786637nSTONES = 786637nSTONE S

Simplified Handwriting: Unistroke

- Single-stroke handwriting recognition
 - Each letter is a single stroke, simple recognition
 - Users have to learn the strokes
 - "Graffiti" intuitive unistroke alphabet (5 min practice: 97% accuracy)

$$\bigwedge_{a} \underset{b}{B} \underset{c}{C} \underset{d}{D} \underset{e}{\varepsilon} \underset{f}{f} \underset{g}{G} \underset{h}{h} \underset{i}{j} \underset{j}{J} \underset{k}{} \underset{k}{} \underset{l}{M} \underset{m}{}$$

$$\bigwedge_{a} \underset{b}{B} \underset{c}{C} \underset{d}{D} \underset{e}{\varepsilon} \underset{f}{f} \underset{g}{} \underset{h}{} \underset{i}{j} \underset{i}{} \underset{j}{} \underset{k}{} \underset{l}{} \underset{m}{} \underset{m}{}$$

$$\bigwedge_{a} \underset{b}{} \underset{c}{} \underset{d}{} \underset{d}{} \underset{e}{} \underset{f}{} \underset{f}{} \underset{g}{} \underset{h}{} \underset{i}{} \underset{i}{j} \underset{i}{} \underset{j}{} \underset{k}{} \underset{l}{} \underset{l}{} \underset{m}{} \underset{m}{}$$

$$\bigwedge_{a} \underset{b}{} \underset{c}{} \underset{d}{} \underset{d}{} \underset{e}{} \underset{f}{} \underset{f}{} \underset{g}{} \underset{h}{} \underset{i}{} \underset{i}{} \underset{i}{} \underset{j}{} \underset{j}{} \underset{k}{} \underset{l}{} \underset{l}{} \underset{m}{} \underset{m}{}$$

- Slow (15 wpm)
- Users have to attend to and respond to recognition process
- Recognition constrains variability of writing styles

Unipad: Language-Based Acceleration for Unistroke

- Speeding up stylus-based text entry
 - Eyes-free entry possible for unistroke
 - Look at suggestions during eyes-free unistrokes
- Language-based acceleration techniques
 - Word completion list based on corpus (word, frequency)
 - Tap candidate
 - Frequent word prompting ("for", "the", "you", "and", etc.)
 - Tap frequent word
 - Suffix completion based on suffix list ("ing", "ness", "ly", etc.)
 - Top-left to bottom-right stroke, tap suffix

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

Unipad: Acceleration by Word Completion

- Word completion example
 - User is entering word "hours"
 - State after two strokes ("ho")
- Experimental interface
 - First line shows text to enter
 - Second line shows text already entered
 - Pad below
 - Entering strokes
 - Word completion list

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

listen to	five hou	rs of ope	ra		
listen to	five				
BEGIN					
🏂 Unipad					
Clear	W<=	C<=	Enter	SoftKey	lower
	h	0			
	(h	ow	1		
	h	ome			
	h	ope			
	h	ouse			
	h	owever			

Unipad: Acceleration by Frequent Word

- Frequent word example
 - User is about to enter "of"
- Pad shows frequent word list
 - User taps "of"

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

listen to	five hour	rs of open	ra					
listen to	five hour	ra						
BEGIN								
🌺 Unipad								
Clear	W<=	C<=	Enter	SoftKey	lower			
of a to is in it			for the you and was					
						that	6	

Unipad: Acceleration by Suffix Completion

- Suffix completion example
 - User is entering "parking"
 - State after 4 strokes ("park")
- Pad shows word completion list
 - User enters top-left to bottom-right stroke to show suffix list
- Pad shows suffix list
 - User taps "ing"

 $p a r \searrow \circ \circ \circ = tap entry in suffix list)$

nipod Text In parking t:	put Experime ickets car	nt n be chall	enged		
BEGIN					_O×
Clear	W<=	C<=	Enter	SoftKey	lower
pai	rk^	S			ful
		ed			ing
		er			ion
est					ive
		ly		n	nent
-		able		r	ness

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

Unipad: Performance

- Entry speed >40 wpm possible
 - KSPC \approx 0.5 (key strokes per character)
- Expert performance simulated on sentence "the quick brown fox jumps over the lazy dog" (43 chars)

MacKenzie, Chen, Oniszczak: Unipad: Single-stroke text entry with language-based acceleration. NordiCHI 2006.

EdgeWrite

- Provide physical constraints
- Moving stylus along edges and diagonals of square input area
- People with motor impairments
- Input = Sequence of visited corners

• Example: Digits

Wobbrock, Myers, Kembel: EdgeWrite: A stylus-based text entry method designed for high accuracy and stability of motion. UIST'03. <u>http://depts.washington.edu/ewrite/</u>

MMI 2: Mobile Interaction

QuickWriting: Gesture-Based Input

- Combine visual keyboards with stylus movements
- Following a path through letters of the word to enter
- Reduced fatigue compared to tapping
- Motor memory for paths

 Ken Perlin: Quikwriting: Continuous Stylus-based Text Entry. UIST'98.

Quickwriting, http://mrl.nyu.edu/~perlin/demos/Quikwrite2_0.html

MMI 2: Mobile Interaction

Swype

- Text entry via continuous swipes, lifting between words
- Guesses most likely word from language model
- Manual disambiguation possible
- Example: entering the word "quick":

- World record text message: 26 words typed in 25.94s
- http://www.swypeinc.com/product.html

Source: GestureWorks.com

TOUCH SCREEN GESTURES

Difference between these touchscreen gestures?

Do you recognize this gesture?

- Multi-touch pinch inwards
 - Typically mapped to "zoom out"
- Relevant gesture parameters
 - Number of touch points
 - Shape
 - Direction
- Challenge: finding intuitive mappings
 - Who should do this?
 - Developers? Designers? Users? Ergonomists?

Gesture Usage

- Letter and digit recognizer
 - Fixed gesture set
 - E.g., based on neural network classifier
 - Trained on large corpus of collected data
- User-customizable recognizer
 - Typically template based
 - Nearest-neighbor matching
- Usage
 - Shortcuts to frequent content
 - Contacts
 - Applications
 - Functionality: "take me home home"
 - Gesture location = operand, gesture shape = operation
 - Annotations, editing marks

Example Application: Gesture Search

- Find items on Android phones
 - Contacts, applications, songs, bookmarks
 - Drawing alphabet gestures
- http://gesturesearch.googlelabs.com

Yang Li. Beyond Pinch and Flick: Enriching Mobile Gesture Interaction. IEEE Computer, December 2009. http://yangl.org/pdf/gesturelibrary-ieee2009.pdf

MMI 2: Mobile Interaction

Recognition of Touch Screen Gestures

- Touch screens on many mobile devices
 - Mostly used for tapping (pointing tasks)
 - Suitable for swiping (crossing tasks)
 - Suitable for entering complex gestures
- Gesture recognition challenging
 - Pattern matching, machine learning
- Approaches for simple UI prototyping
 - \$1 Recognizer
 - Wobbrock, Wilson, Li. Gestures without Libraries, Toolkits or Training: A \$1 Recognizer for User Interface Prototypes. UIST 2007.
 - http://depts.washington.edu/aimgroup/proj/dollar/
 - Protractor
 - Li. Protractor: A Fast and Accurate Gesture Recognizer. CHI 2010.
 - http://yanglisite.net

Recognition of User-Defined Touch Screen Gestures

- Template-based recognizers
 - Template preserves shape and sequence of training gesture
 - Nearest neighbor approach
- Process
 - Store training samples as templates (multiple templates per gesture)
 - Compare unknown gesture against templates
 - Choose class of most similar template
- Advantages
 - Purely data-driven, customizable (no assumed underlying model)
 - Small number of examples per class sufficient
- Disadvantages
 - Comparison with all templates can be time and space consuming

Template-Based Recognizers

• Templates (4 classes, 3 examples per class)

• Query gesture

Gesture Set of "\$1 Recognizer"

- Unistroke gestures (touch – move – release)
- Dot indicates start point

http://depts.washington.edu/aimgroup/proj/dollar/

Variability in Raw Input

- Number and distribution of sample points depends on
 - Sampling rate
 - Movement speed and variability
 - Movement amplitude (scale)
 - Initial position and orientation

Preprocessing of Gesture Trace

- Resample to fixed number of points
 - E.g., N = 16 points
 - Linear interpolation
 - Length per step = pathLength / (N-1)
- Compute centroid c
- Translate by -c

 Centered at origin
- Normalize v (to length 1)
 - Treat trace as vector of R^{2N}:

 $v = x_1, y_1, x_2, y_2, ..., x_N, y_N$

Original trace

Gesture Recognition

- Gesture recognition = search for most similar template
- Preprocessed query gesture g and templates t_i
 - Resampled (N=16), centroid translated to origin, normalized
- "Most similar" metric?
 - Sum of squared differences between points min j = 1..M { sum i = 1..2N { (gi-tji)² } }
 - $\label{eq:scalar} \begin{array}{l} \mbox{ Scalar product between query gesture and template} \\ min_{j\,=\,1..M} \left\{ \mbox{ acos(sum_{i\,=\,1..2N} \left\{ \ (g_i \, t_{ji})^2 \right\} \) } \right. \ or \\ max_{j\,=\,1..M} \left\{ \ sum_{i\,=\,1..2N} \left\{ \ (g_i \, t_{ji})^2 \right\} \right\} \end{array}$
- Remaining variability: rotation (and gesture class)

Optimal Angular Distance

- Orientation of template might be different from query gesture
- Example:

check

(resampled) query gesture

best-matching template

best-matching template optimally rotated to match query

Overlaying query gesture (black) and optimally rotated best-matching template (red):

How to find the optimal angle?

Finding the Optimal Angular Distance

- Wobbrock et al., UIST'07
 - "Seed and search":
 Given query and template, try different orientations and take best one
- Li, "Protractor", CHI'10
 - Closed form solution!
 - Better speed and performance!

• Closed form solution: Find θ that optimizes metric

- Metric: Min. angle between query gesture g and template t in R^{2N} Optimal angle: θ = argmin $_{-\pi \le \theta \le \pi}$ { acos(g · t(θ)) }
- Equivalent: Max. scalar product between g and t in R^{2N} Optimal angle: θ = argmax $_{-\pi \le \theta \le \pi}$ { g · t(θ) }

Wobbrock et al., UIST'07

Optimal Angular Distance: Closed Form Solution

• Find θ that maximizes scalar product between g and t

$$\theta = \operatorname{argmax}_{-\pi \leq \theta \leq \pi} \{ g \cdot t(\theta) \}$$

 $g = x_1, y_1, ..., x_N, y_N$

- $t(0) = x_1^t, y_1^t, ..., x_N^t, y_N^t$
- Rotate each point in t by $\boldsymbol{\theta}$

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \qquad \begin{aligned} x' &= x\cos\theta - y\sin\theta\\ y' &= x\sin\theta + y\cos\theta \end{aligned}$$

 $t(\theta) = x_1^t \cos \theta - y_1^t \sin \theta, \quad x_1^t \sin \theta + y_1^t \cos \theta, \dots$

• Minimize scalar product $g \cdot t(\theta)$

Optimal Angular Distance: Closed Form Solution

- Scalar product $g \cdot t(\theta)$
 - $= sum\{1..N\}(x_i(x_i^t \cos \theta y_i^t \sin \theta) + y_i(x_i^t \sin \theta + y_i^t \cos \theta))$
 - $= sum\{1..N\}(x_i x_i^t \cos \theta x_i y_i^t \sin \theta + y_i x_i^t \sin \theta + y_i y_i^t \cos \theta)$
 - $= sum\{1..N\}(\cos \theta (x_{i} x_{i}^{t} + y_{i} y_{i}^{t}) + sin \theta (y_{i} x_{i}^{t} x_{i} y_{i}^{t}))$
 - = $\cos \theta \, sum\{1..N\}(x_i \, x_i^t + y_i \, y_i^t) + \sin \theta \, sum\{1..N\}(y_i \, x_i^t x_i \, y_i^t)$
 - $= a \cos \theta + b \sin \theta$

with a = sum{1..N}($x_i x_i^t + y_i y_i^t$)

and b = sum{1..N}($y_i x_i^t - x_i y_i^t$)

• Remaining task: $\theta = \operatorname{argmin}(a \cos \theta + b \sin \theta)$ -a sin θ + b cos θ = 0 \Leftrightarrow a sin θ = b cos θ \Leftrightarrow sin θ / cos θ = b / a = tan θ \Leftrightarrow θ = atan (b / a)

