MMI 2: Mobile Human-Computer Interaction
Location & Context

Prof. Dr. Michael Rohs
michael.rohs@ifi.lmu.de
Mobile Interaction Lab, LMU München
Lectures

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.10.2011</td>
<td>Introduction to Mobile Interaction, Mobile Device Platforms</td>
</tr>
<tr>
<td>2</td>
<td>26.10.2011</td>
<td>History of Mobile Interaction, Mobile Device Platforms</td>
</tr>
<tr>
<td>3</td>
<td>2.11.2011</td>
<td>Mobile Input and Output Technologies</td>
</tr>
<tr>
<td>4</td>
<td>9.11.2011</td>
<td>Mobile Input and Output Technologies, Mobile Device Platforms</td>
</tr>
<tr>
<td>5</td>
<td>16.11.2011</td>
<td>Mobile Communication</td>
</tr>
<tr>
<td>6</td>
<td>23.11.2011</td>
<td>Location and Context</td>
</tr>
<tr>
<td>7</td>
<td>30.11.2011</td>
<td>Mobile Interaction Design Process and Prototyping</td>
</tr>
<tr>
<td>8</td>
<td>7.12.2011</td>
<td>Evaluation of Mobile Applications</td>
</tr>
<tr>
<td>10</td>
<td>21.12.2011</td>
<td>Mobile Devices and Interactive Surfaces</td>
</tr>
<tr>
<td>11</td>
<td>11.1.2012</td>
<td>Camera-Based Mobile Interaction 1</td>
</tr>
<tr>
<td>12</td>
<td>18.1.2012</td>
<td>Camera-Based Mobile Interaction 2</td>
</tr>
<tr>
<td>13</td>
<td>25.1.2012</td>
<td>Sensor-Based Mobile Interaction 1</td>
</tr>
<tr>
<td>14</td>
<td>1.2.2012</td>
<td>Sensor-Based Mobile Interaction 2</td>
</tr>
<tr>
<td>15</td>
<td>8.2.2012</td>
<td>Exam</td>
</tr>
</tbody>
</table>
Review

- Name wireless communication technologies
- What technology for transmitting sensor data?
- What technology requirements for voice calls?
- Design goals of Bluetooth?
- What is a Piconet? Device roles?
- How are connections established in Bluetooth?
- How is power saved in Bluetooth?
- What is SDP?
- What are examples of cell-based systems?
Preview

- Context
- Describing and deriving location
- Location systems
- Application examples

- Android Location & Map APIs
- Android Media Framework
CONTEXT
Characteristics of Context

• Context
 – Where you are, who you are with, what resources are nearby
 – Information about the user, the user’s environment, the device’s context of use

• User’s context changes rapidly when mobile
 – User interacts with many devices, people, objects, and places

• Context-aware applications
 – Capture and retrieve context information
 – Adapt to the user’s context
 – Reduce need for explicit user input
 – Are better integrated with user’s environment and activity
Active Artifacts

• Determine activity where it occurs
• Add “self perception” to everyday things
• Communicate their own state
• The artifact digitally “supports” its own applications
• Example: MediaCup
 – http://mediacup.teco.edu
• Exercise: Assume MediaCup should be able to discriminate
 – Informal meeting
 – Presentation Coffee break
 – Working alone
 → What sensors? How to represent the situation?
Defining Context

• Context-aware computing (Schilit and Theimer, 1994)
 Software that “adapts according to its location of use, the collection of nearby people and objects, as well as changes to those objects over time”

• Context (Dey, 2001)
 “Context is any information that can be used to characterize the situation of an entity. An entity is a person, place or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves, and by extension, the environment the user and applications are embedded in.”
Context Sources

- Current location
- Location history
- Orientation
- Speed
- Time of day
- Day of week
- Illumination
- Noise level
- Temperature
- Network availability
- Network bandwidth
- Remaining battery life
- Device movements
- Dialogue history
- User’s activity & schedule
- User’s mood
- Group constellation
- Number of people around
Location and Context

• Location is an important part of the user’s context
• Locations have a context
 – Noise level and its fluctuations
 – Light level and its fluctuations
 – Number of people in the space
 – Relationship between people present
 – Social protocol at that location
 – Activity for which the location is designed
Techniques in Context-Aware Computing

- Proximate selection
 - E.g., list nearest printer first
- Automatic contextual reconfiguration
 - E.g., share nearby electronic whiteboard automatically
- Contextual information and commands
 - Commands with different meanings in different contexts
 - Command only in certain contexts
- Context-triggered actions
 - Condition-action rules

Source: Schilit et al. 1994
Context-Triggered Actions

• Simple if-then-rules, similar to Unix CRON-Demon:
 - Coffee Kitchen arriving "play -v 50 /sounds/rooster.au"
 - Schilit * attention "emacs -display $NEARESTHOST:0.0"

• Contextual reminders: information is displayed under certain conditions. Example:

 $\mathrm{DATE}="\text{after April 15}"
 \mathrm{AND} \ $\mathrm{TIME}="\text{after 10}"
 \mathrm{AND} \ $\mathrm{room}="\text{35-2-200}"
 \mathrm{AND} \ $\mathrm{WITH-USER}=\text{Adams}"
 \mathrm{AND} \ \text{Color}\left(\$\mathrm{DISPLAY}\right)=\text{true}"
Difficult Problems in Context-Aware Systems

• How to abstract relevant (higher level) context from low level sensor data
 – How do derive user’s intent and situation?
 – Sensors \rightarrow features \rightarrow context \rightarrow intent/situation
 – How to deal with uncertainty in context recognition?

• How to model and exchange context data?
 – Going beyond basic sensor data mining requires AI techniques, knowledge representation (ontologies, taxonomies)

• How to apply the obtained context information
 – Implicit vs. explicit control of systems

• Intelligibility
 – Helping the user to understand system actions
 – Proactivity vs. losing control
Usability Risks for Mobile Context-Aware Applications (Dey, Häkkilä, 2006)

- Uncertainty in context recognition
- Information overflow
- Lack of user control
- Application complexity
- Privacy violations
- Subjective understanding of context attributes
- Lack of common agreed ontologies
- Imbalance between automatic and user-initiated actions
- Poor interoperability

Design Guidelines for Mobile Context-Aware Applications (Häkkilä, Mäntyjärvı, 2006)

- Select appropriate level of automation
 - Depending on level of uncertainty
- Ensure user control
- Avoid unnecessary interruptions
 - Intrusive, distract, but can have high value
- Avoid information overflow
- Appropriate visibility level of system status
- Personalization for individual needs
- Secure user’s privacy
- Take into account the impact of social context

LOCATION
Aspects of Location Information

- Position vs. place
 - 52N 13E vs. university main building

- Absolute vs. relative
 - 52N 13E vs. 10 km west of where I am

- Representation of uncertainty
 - A few km vs. room level vs. a few cm

- Indoor vs. outdoor
 - Elevation / floor number difficult

- Privacy model
 - Self-positioning vs. infrastructure-based

Blue area exposes uncertainty
Some Location Technologies

- GPS
- Wi-Fi access points
- GSM cell
- Ultrasound (time of flight) + radio signal
- Camera: Visual recognition
- Floor pressure
- Signal strength
- Laser range-finding
- Proximity and physical contact (RFID, NFC)
Location Methods

• **Trilateration**
 – Distance to 3 reference points yields 2D position (4 in 3D)
 – Measuring distance
 • Time of flight (3ns/m for EM, 3ms/m for sound)
 • Signal strength (the stronger the signal, the closer we are)
 – Sources of error
 • Resolution, reflections, multi-path effects

• **Triangulation**
 – Measure angles instead of distances
 – Sources of error as above

• **Fingerprinting**
 – Correlation with past observations
 – Database of environment properties
 • Vision, radio signals, etc.
DERIVING LOCATION
Challenges of Deriving Location

- **Uncertainty**
 - Accuracy, precision

- **Cost**
 - Money, energy

- **Responsiveness**
 - Time to result

- **Ubiquity**
 - Coverage, indoors, outdoors

High accuracy, low precision
Low accuracy, high precision
Odometry and Inertial Systems

Odometry: Greek words hodos ("travel", "journey") and metron ("measure")

- Measure change in linear/angular position, velocity, or acceleration to estimate position
 - Example: Measure wheel iterations during vehicle navigation
- Single or double integration accumulates error
 - For short distances/times only
Computer Vision-Based Tracking

• Try to detect
 – Objects directly (persons, landmarks)
 – Textures (e.g. floor texture)
 – Fiducials (2D-Barcodes)

• Problems
 – Image processing expensive
 – Often not robust enough
Cell-based Positioning

• Basic GSM-based positioning
 – Cell-ID: 300m (city) to 20km (rural areas)

• More precise GSM-based positioning with
 – Sectored cells (angle of arrival)
 – Multiple base stations (time of arrival, signal strength)

• Only Cell-ID positioning always provided
Signal Strength

- Problems with the “long tail”
- Depends on the environment
Fingerprints

- Measuring of signal strengths at lots of locations (fingerprints)
- Determine position by measuring differences to fingerprints
 - Accuracy: 2-5 m
LOCATION SYSTEMS
Taxonomy of Location Systems

- Location Systems for Ubiquitous Computing
 – Jeffrey Hightower and Gaetano Borriello
 – www.cse.iitb.ac.in/~varsha/allpapers/wireless/locationDet.pdf
<table>
<thead>
<tr>
<th>Technology Name</th>
<th>Properties</th>
<th>Technique</th>
<th>Phys</th>
<th>Symb</th>
<th>Abs</th>
<th>Rel</th>
<th>LLC</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td></td>
<td>Radio time-of-flight lateration</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Active Badges</td>
<td></td>
<td>Diffuse infrared cellular proximity</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Active Bats</td>
<td></td>
<td>Ultrasound time-of-flight lateration</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MotionStar</td>
<td></td>
<td>Scene analysis, lateration</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>VHF Omnidirectional Ranging (VOR)</td>
<td></td>
<td>Angulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cricket</td>
<td></td>
<td>Proximity, lateration</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MSR RADAR</td>
<td></td>
<td>802.11 RF scene analysis & triangulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PinPoint 3D-iD</td>
<td></td>
<td>RF lateration</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Avalanche Transceivers</td>
<td></td>
<td>Radio signal strength proximity</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Easy Living</td>
<td></td>
<td>Vision, triangulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Smart Floor</td>
<td></td>
<td>Physical contact proximity</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Automatic ID Systems</td>
<td></td>
<td>Proximity</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Wireless Andrew</td>
<td></td>
<td>802.11 cellular proximity</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>E911</td>
<td></td>
<td>Triangulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SpotON</td>
<td></td>
<td>Ad hoc lateration</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
The Active Badge System (1990)

• Olivetti / AT&T
 – Schilit, Hopper, Harter, et al.

• Teleport
 – Redirect screen output from “home” computer to nearby computer

• Phone forwarding
 – Automatically forward phone calls to nearest phone
Active Badges: Technology

• Badges worn by users
 – Emit unique IR signals
 – 1 signal every 15 sec
• IR sensors distributed in building
 – Room level accuracy
• Central server scans for “badge sightings”
Active Bats Ultrasonic Location System

- Fine-grained 3D position and orientation tracking
- Trilateration: position finding by measuring distances
- Ultrasound signal synchronized with RF signal
- 2-5 cm accuracy, expensive, 1 receiver/m²

http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/
http://www.cl.cam.ac.uk/research/dtg/attarchive/spirit/
Place Lab Location System

• Uses existing RF sources: Wi-Fi, GSM, Bluetooth
• “War-driving” databases
 – Walk/drive around and associate Wi-Fi and GSM signals with current GPS position
 – Explore positions of stations
 – Difficult to keep current
• Accuracy
 – 15-30m (in dense areas) for Wi-Fi
 – 150-300m for GSM
• Lots of projects
 – http://www.placelab.org/projects/

Seattle's Wi-Fi nodes; wifimaps.com, cc-by-sa
GLOBAL LOCATION
Global Reference System?

- How to denote locations on a sphere?
Location Reference System: Coordinates ≠ Coordinates

- Treat the earth as a sphere, ellipsoid or geoid
WGS 84 – A Global Reference System

• The World Geodetic System defines a reference frame for the earth, for use in geodesy and navigation.

• Using a special ellipsoid: WGS 84
 – a = 6378137.000 m
 – b = 6356752.314 m
 – Inverse flattening:
 \[f = 298.257 := (a-b) / a \]

• Geocentric and globally consistent within ±1 m
 – Latitudes, longitudes, altitudes
WGS 84 – A Global Reference System

• Longitudes
 – $\lambda = 0^\circ$: 102.5m east of the Greenwich Prime Meridian (Greenwich Royal Observatory)
 – $\lambda > 0^\circ$: east
 – $\lambda < 0^\circ$: west

• Latitudes
 – $\phi = 0^\circ$: equator
 – $\phi = 90^\circ$: north pole
 – $\phi = -90^\circ$: south pole

• 1714 “longitude act”: UK government offered £20000 reward for method to determine longitude
Length of 1° Longitude in Meters

• At equator (lat. = 0°)
 – 1° lon. = 1/360 of the length of the equator = 111.3 km

• At North Pole (lat. = 90°)
 – 1° lon. = 0 km

• Berlin (lat. = 52.513°)
 – 1° lon. = 67.9 km

• Length of 1° of latitude slightly varies with latitude
 – Earth modeled as ellipsoid
Map Projections

• How to draw a 3D sphere on a 2D map?
• Many possibilities, all involve distortions
• Mercator projection: cylindrical projection
 – Standard for nautical navigation, used by GoogleMaps
Google Maps Zoom Levels

- **Zoom level = 0**
 - Equator length = 256 pixels
 = \(2\pi \times 6378137\) m
 - 1 pixel = 156.5 km

- **Zoom level = i**
 - Equator length = \(256 \times 2^i\) pixels
 = \(2\pi \times 6378137\) m
 - 1 pixel = \(2\pi \times 6378.137 / (256 \times 2^i)\) km

- **Zoom level = 19**
 - 1 pixel = \(2\pi \times 6378.137 / (256 \times 2^{19})\) km
 ≈ 30 cm

zoom level 0
equator = 256 pixels
= \(2\pi \times 6378137\) m

zoom level 7
equator = 32768 pixels
1 pixel = 1.2 km
Positioning by Signal Runtime Differences

- Measuring signal runtime ("time of flight") from known senders
- Short time spans \rightarrow difficult to measure
- Problems
 - Radio: Multi-path, atmospheric distortions
 - Good placement of senders necessary
- Enhance results by introducing reference points
- Do you know a "famous" example?
GPS (Global Positioning System)
GPS: System Schema

- **Components**
 - Satellites
 - Control system
 - Receiver

- **24 Satellites**
 - 20000 km
 - 2 times around the world a day

- **Maintenance cost**
 - 750M$ a year
GPS: Deriving Location

- One satellite
- Two satellites
- Three satellites
GPS: Differential GPS

- Enhancement of precision by using a correct reference signal (Differential GPS)
- Need to know the position of a receiver that sends the difference between actual and measured position to the mobile device
- Problem: Delay of correction signal
LOCATION-BASED SERVICES
AND APPLICATIONS
Layar “Reality Browser”

- Position + orientation
 - GPS, accelerometer, magnetometer
- Show POIs as overlays on viewfinder image
- Platform allows inserting new layers and POIs
- Layers
 - Real estate
 - Transportation
 - Tours / Guides
 - Eating & Drinking
- http://layar.com/
iSafe – Personal Safety Application

- Informs you about possible dangers in your current location

[Images of iSafe app interface and map]

http://www.freefamilywatch.com/demo.html
Remember The Milk

• Organize your tasks by location

http://www.rememberthemilk.com

Locate your tasks.
Use the map to see where your tasks are located in the real world. See what's nearby or on your way, and plan the best way to get things done.
REXplorer Location-Based Game (2005+)

- Explore the ancient Regensburg and interact with historical characters through gestures
 - http://www.rex-regensburg.de/stadtspiel/rexplorer
 - http://hci.rwth-aachen.de/REXplorer
Mr. Lee GPS Tracking for Cats

- GPS receiver and camera
 - Know where your cat strolled around
 - Generate cat photo tours

http://www.mr-lee-catcam.de/index.htm
ANDROID LOCATION
AND MAP APIS
Android Location and Map APIs

• Location API: Access location data (GPS, WiFi, GSM)
 – Package android.location
 – LocationManager
 – Geocoder

• Map API: Display and navigate maps
 – Package com.google.android.maps
 – MapView
 – MapActivity
 – Example
 developer.android.com/guide/tutorials/views/hello-mapview.html
Permissions (in AndroidManifest.xml)

• Permissions for location-based services

 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission
 android:name="android.permission.ACCESS_MOCK_LOCATION" />

 <uses-permission
 android:name="android.permission.INTERNET" />

 ...

• Child of <application>

 <uses-library android:name="com.google.android.maps" />

• Overview of Android permissions

 developer.android.com/reference/android/Manifest.permission.html
Example Manifest for Location

```xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    package="de.lmu.location"
    android:versionCode="1"
    android:versionName="1.0">
    <uses-sdk android:minSdkVersion="8"/>
    <application android:icon="@drawable/icon" android:label="@string/app_name" android:debuggable="true">
        <activity android:name=".MainActivity"
            android:label="@string/app_name">
            <intent-filter>
                <action android:name="android.intent.action.MAIN"/>
                <category android:name="android.intent.category.LAUNCHER"/>
            </intent-filter>
        </activity>
    </application>
    <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
    <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
    <uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION"/>
    <uses-permission android:name="android.permission.VIBRATE"/>
</manifest>
```
Location Manager Service

• Obtain device’s geographical location
• Get notification upon entering a specified location
• Get last location
 – `getLastKnownLocation(provider);`
 – `provider: GPS_PROVIDER, NETWORK_PROVIDER`

• Register listener for location updates
 – `requestLocationUpdates(provider, minTime, minDistance, listener);`
 – `provider: GPS_PROVIDER, NETWORK_PROVIDER`
 – `minTime`: minimum time between notifications [ms]
 – `minDistance`: minimum distance between notifications [m]
 – `listener`: notified about location updates
Example: Last Location

```java
public class LocationManagerDemoActivity extends Activity {
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        LocationManager locMgr = (LocationManager)
            getSystemService(Context.LOCATION_SERVICE);
        Location loc = locMgr
            .getLastKnownLocation(LocationManager.GPS_PROVIDER);
        Toast.makeText(this, loc.toString(), 10000).show();
        Log.d("last location", loc.toString());
        List<String> providerList = locMgr.getAllProviders();
        Iterator<String> iter = providerList.iterator();
        while (iter.hasNext) {
            Log.d("provider", iter.next().toString());
        }
    }
}
```
Template for Location Updates

```java
public class MainActivity extends Activity implements LocationListener {
    LocationManager locationManager = null;

    ...

    public void onLocationChanged(Location location) {
        if (location != null) {
            // process location update
        }
    }

    public void onProviderDisabled(String provider) {}
    public void onProviderEnabled(String provider) {}
    public void onStatusChanged(String provider, int status, Bundle ext) {}
}
```
Example: Location Updates

```java
public class LocationUpdateDemoActivity extends Activity {
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        LocationManager locMgr = (LocationManager)
            getSystemService(Context.LOCATION_SERVICE);
        LocationListener locListener = new LocationListener() {
            public void onLocationChanged(Location location) {
                if (location != null) {
                    Toast.makeText(getBaseContext(),
                        "New location (" + location.getLatitude() + ", " +
                        location.getLongitude() + ")", Toast.LENGTH_LONG).show();
                }
            }
            public void onProviderDisabled(String provider) {}
            public void onProviderEnabled(String provider) {}
            public void onStatusChanged(String provider, int status, Bundle extras) {}
        };
        locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
            5000, 0, locListener);
    }
```
Enabling GPS on the Emulator
Enabling GPS on the Emulator

![Image of Android Virtual Device (AVD) configuration screen]

Name: Android22GPS
Target: Android 2.2 – API Level 8
SD Card:
- Size: 128 MiB
Snapshot: Enabled
Skin: Default (WVGA800)
Hardware:
- Property: GPS support, Value: yes
- Abstracted LCD density: 240
- Max VM application heap size: 24

Override the existing AVD with the same name
Eclipse Configuration

• LogCat View
 – Log.d output

• Emulator Control View
 – Entering locations
Entering Locations in Emulator Control View

• How to get latitude and longitude?
Simulated Location via Telnet

• Telnet to a running emulator
 – telnet localhost <emulator port>
 – geo fix <lon> <lat>
 – geo nmea <nmea sentence>

• Example
 – telnet localhost 5554
 – geo fix 13 52
Keyhole Markup Language (KML)

• XML-based language for expressing geographic information
 – Standardized by the Open Geospatial Consortium
 – Used in Google Maps (Mobile), Google Earth

• Example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
  <Document>
    <Placemark>
      <name>Target 1</name>
      <description>This is the first target.</description>
      <Point>
        <coordinates>11.647552,48.143446,0</coordinates> <!-- longitude, latitude, altitude -->
      </Point>
    </Placemark>
  </Document>
</kml>
```

• Try it out: kml-samples.googlecode.com/svn/trunk/interactive/index.html
KML in the Emulator

- Click a row to send location to emulator
Distance Between Geo-Locations

- Distance (in m) between two geolocations

```java
float[] results = new float[1];
Location.distanceBetween(lat, lon, poi.latitude, poi.longitude, results);
float distance = results[0];
```
GOOGLE MAPS
Map API Key

- Locate keystore
- Open command line
- Get MD5 hash of debug certificate

 keytool -list -keystore ~/.android/debug.keystore
 -storepass android -keypass android

- Get the key from Google

- Projects using maps need build target “GoogleAPIs”
 - Potentially needs a new AVD
Example Map View

- XML

  ```xml
  <LinearLayout xmlns:android="http://schemas…"
      android:orientation="vertical" android:layout_…>
    <com.google.android.maps.MapView android:layout_…
        android:apiKey="02LvHoUW1Z_HVYZWU…"/>
  </LinearLayout>
  ```

- Java

  ```java
  public class MapViewDemoActivity extends MapActivity {
      protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.mapview);
      }
      protected boolean isRouteDisplayed() { return false; }
  }
  ```
Example Map View with Controls

<LinearLayout xmlns:android="http://schemas..."
 android:orientation="vertical" ...>
 <LinearLayout android:orientation="horizontal" android:layout_...>
 <Button android:id="@+id/zoomin" android:text=" + " ... />
 <Button android:id="@+id/zoomout" android:text=" - " ... />
 </LinearLayout>
 <com.google.android.maps.MapView
 android:id="@+id/mapview"
 android:apiKey="02Lv..." ... />
</LinearLayout>
Example Map View with Controls

```java
public class MapViewDemoActivity extends MapActivity {
    private MapView mapView;

    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.mapview);
        mapView = (MapView) findViewById(R.id.mapview);

        Button zoominBtn = (Button) findViewById(R.id.zoomin);
        zoominBtn.setOnClickListener(new OnClickListener() {
            public void onClick(View view) {
                mapView.getController().zoomIn();
            }
        });

        ...}

    protected boolean isRouteDisplayed() { return false; }
}   
```
Using Overlays

- /res/layout/mapviewoverlay.xml

```xml
<LinearLayout xmlns:android="http://schemas...
    android:orientation="vertical" ...>
    <com.google.android.maps.MapView
        android:id="@+id/mapviewoverlay"
        android:apiKey="02Lv..." ... />
</LinearLayout>
```
public class MappingOverlayActivity extends MapActivity {
 private MapView mapView;
 private GeoPoint tlabs = new GeoPoint((int)(52.513036 * 1000000), (int)(13.320281 * 1000000));
 private GeoPoint saeule = new GeoPoint((int)(52.514495 * 1000000), (int)(13.350130 * 1000000));

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.mapviewoverlay);
 mapView = (MapView) findViewById(R.id.mapviewoverlay);
 mapView.setBuiltInZoomControls(true);
 mapView.setClickable(true);
 mapView.getController().setCenter(tlabs);
 mapView.getController().setZoom(14);
 Drawable marker = getResources().getDrawable(R.drawable.pushpin);
 mapView.getOverlays().add(new InterestingLocations(marker));
 }
 ...
}
Using Overlays

class InterestingLocations extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> locations = new ArrayList<OverlayItem>();
 private Drawable marker;
 public InterestingLocations(Drawable marker) {
 super(marker);
 this.marker = marker;
 locations.add(new OverlayItem(tlabs, "T-Labs", "T-Labs"));
 locations.add(new OverlayItem(saeule, "Siegessäule", "Siegessäule"));
 populate();
 }
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 super.draw(canvas, mapView, shadow);
 boundCenterBottom(marker);
 }
 protected OverlayItem createltem(int i) {
 return locations.get(i);
 }
 public int size() {
 return locations.size();
 }
}

Marker hotspot: bottom center
GEOCODING
Geocoding

• Geocoding: address \(\rightarrow\) latitude / longitude
• Reverse geocoding: latitude / longitude \(\rightarrow\) address(es)

• Package android.location
 – List<Address> getFromLocation(double lat, double lon, int max)
 – List<Address> getFromLocationName(StringLocationName, int max)
Geocoding with Threads
/res/layout/geocode.xml

```xml
<RelativeLayout xmlns:android="http://schemas...
    android:layout_alignParentBottom="true"
    android:orientation="vertical"/>

    <EditText android:id="@+id/location"/>
    <Button android:id="@+id/geocodeBtn"
        android:text="Find Location"/>

</LinearLayout>

<com.google.android.maps.MapView
    android:id="@+id/geoMap"
    android:clickable="true"
    android:apiKey="02Lv..."/>

</RelativeLayout>
```
Geocoding with Threads

```
public class GeocodingWithThreads extends MapActivity {
    Geocoder geocoder = null;
    MapView mapView = null;
    ProgressDialog progDialog = null;
    List<Address> addressList = null;

    protected void onCreate(Bundle b) {
        super.onCreate(b);
        setContentView(R.layout.geocode);
        mapView = (MapView) findViewById(R.id.geoMap);
        int lat = (int) (52.513036 * 1000000);
        int lng = (int) (13.320281 * 1000000);
        GeoPoint pt = new GeoPoint(lat, lng);
        mapView.getController().setZoom(10);
        mapView.getController().setCenter(pt);
    }
```
Geocoding with Threads

g geocoder = new Geocoder(this);
Button geoBtn = (Button) findViewById(R.id.geocodeBtn);
geoBtn.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 EditText loc = (EditText) findViewById(R.id.location);
 String locationName = loc.getText().toString();
 progDialog = ProgressDialog.show(
 GeocodingWithThreads.this, "Processing...",
 "Finding Location...", true, false);
 findLocation(locationName);
 }
});
Geocoding with Threads

private void findLocation(final String locationName) {
 Thread thread = new Thread() {
 public void run() {
 try {
 // do background work
 addressList = geocoder.getFromLocationName(locationName, 5);
 // send message to handler to process results
 uiCallback.sendEmptyMessage(0);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 };
 thread.start();
}
Geocoding with Threads

```java
private Handler uiCallback = new Handler() {
    public void handleMessage(Message msg) {
        progDialog.dismiss();
        if (addressList != null && addressList.size() > 0) {
            int lat = (int) addressList.get(0).getLatitude() * 1000000;
            int lng = (int) addressList.get(0).getLongitude() * 1000000;
            GeoPoint pt = new GeoPoint(lat, lng);
            mapView.getController().setCenter(pt);
        } else {
            Dialog foundNothingDlg = new AlertDialog.Builder(
                    GeocodingWithThreads.this)
                .setIcon(0).setTitle("Failed to Find Location")
                .setPositiveButton("OK", null)
                .setMessage("Location Not Found...")
                .create();
            foundNothingDlg.show();
        }
    }
};
```
MEDIA FRAMEWORK
Media APIs

• Package android.media
 – MediaPlayer: Playing audio and video content
 – MediaRecorder: Record audio and video content

• Content sources
 – Internet
 – .apk file (as a resource or as an “asset”)
 – Secure digital (SD) card
Audio Player Example
/res/layout/main.xml

```xml
<LinearLayout xmlns:android="http://schemas...
android:orientation="vertical" ...>

<Button android:id="@+id/startPlayerBtn"
android:text="Start Playing Audio" ... />

<Button android:id="@+id/restartPlayerBtn"
android:text="Restart Player" ... />

<Button android:id="@+id/pausePlayerBtn"
android:text="Pause Player" ... />

</LinearLayout>
```
Audio Player Example

```java
public class MainActivity extends Activity {
    private static final String AUDIO_URL = "http://music.com/song.mp3";
    private MediaPlayer mediaPlayer = null;
    private int playbackPosition = 0;

    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        Button startPlayerBtn = (Button) findViewById(R.id.startPlayerBtn);
        Button pausePlayerBtn = (Button) findViewById(R.id.pausePlayerBtn);
        Button restartPlayerBtn = (Button) findViewById(R.id.restartPlayerBtn);
        startPlayerBtn.setOnClickListener(new OnClickListener() {
            public void onClick(View view) {
                try { playAudio(AUDIO_URL); }
                catch (Exception e) { e.printStackTrace(); }
            }
        });
    }
}
Audio Player Example

```java
pausePlayerBtn.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 if (mediaPlayer != null) {
 playbackPosition = mediaPlayer.getCurrentPosition();
 mediaPlayer.pause();
 }
 }
});

restartPlayerBtn.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 if (mediaPlayer != null && !mediaPlayer.isPlaying()) {
 mediaPlayer.start();
 mediaPlayer.seekTo(playbackPosition);
 }
 }
});
```
Audio Player Example

```java
private void playAudio(String url) throws Exception {
 killMediaPlayer();
 mediaPlayer = new MediaPlayer();
 mediaPlayer.setDataSource(url);
 mediaPlayer.prepare();
 mediaPlayer.start();
}

protected void onDestroy() {
 super.onDestroy();
 killMediaPlayer();
}

private void killMediaPlayer() {
 if (mediaPlayer != null) {
 try {
 mediaPlayer.release();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}
```
Playing Local Media Files

• In /res/raw/song.mp3
  
  mediaPlayer = MediaPlayer.create(this, R.raw.song);
  mediaPlayer.start();

• Via file descriptor
  
  AssetFileDescriptor fileDesc =
      getResources().openRawResourceFd(R.raw.song);
  mediaPlayer = new MediaPlayer();
  mediaPlayer.setDataSource(fileDesc.getFileDescriptor(),
      fileDesc.getStartOffset(), fileDesc.getLength());
  fileDesc.close();
  mediaPlayer.prepare();
  mediaPlayer.start();
The End