6 Cryptographic Techniques – A Brief Introduction

6.1 Introduction to Cryptography
6.2 Symmetric Encryption
6.3 Asymmetric (Public-Key) Encryption
6.4 Digital Signatures
6.5 Public Key Infrastructures

Literature:
Wolfgang Ertel: Angewandte Kryptographie, Hanser 2007
Purpose of Cryptographic Techniques

• To protect the content of communication between two parties
 – Protection against various kinds of attacks
 – Preserving confidentiality and integrity of a message
 – Computer-equivalent to packaging and sealing
• To establish the identity of communication partners (authentication)
 – Computer-equivalent to hand-written signature
 – Nonrepudiation (Zurechenbarkeit):
 Avoiding false denial of the fact that someone has sent a message

• Applications for networked multimedia:
 – Encrypted content in DRM, decryption only for authorized users
 – Packaging keys and right specifications in DRM
 – Identifying business partners for payment procedures
 – Protecting electronic forms of money
 – Protecting important personal data
Encryption and Decryption

- A *sender* (often called Alice) wants to send a *message* to a *receiver* (often called *Bob*), in a way that an eavesdropper (often called *Eve*) cannot read the message.
 - Plaintext message (binary data) M
 - Ciphertext C

- Encryption E:
 \[E(M) = C \]

- Decryption D:
 \[D(C) = M \]
 such that $D(E(M)) = M$

- Encryption/Decryption should not rely on keeping the algorithms secret.
 - Kerckhoffs principle
Encryption and Decryption Keys

- **Encryption** E:
 \[E(K_1, M) = C \]

- **Decryption** D:
 \[D(K_2, C) = M \]
 such that $D(K_2, E(K_1, M)) = M$

- **Special case**: Identical keys for encryption and decryption (*symmetry*)
Attack Terminology

• Ciphertext-only attack
 – Recover the plaintext or the keys based only on the ciphertext

• Known-plaintext attack:
 – Deduce the keys from given plaintext and corresponding ciphertext

• Chosen-plaintext attack:
 – Attacker (cryptanalyst) can obtain the encoding result on an arbitrary plaintext

• Chosen-ciphertext attack:
 – Attacker (cryptanalyst) can obtain the decoding result on an arbitrary ciphertext

• Brute-force attack
 – Trying out all possible keys
 – Breakability depends on available computing power
6 Cryptographic Techniques – A Brief Introduction

6.1 Introduction to Cryptography
6.2 Symmetric Encryption
6.3 Asymmetric (Public-Key) Encryption
6.4 Digital Signatures
6.5 Public Key Infrastructures

Literature:
Wolfgang Ertel: Angewandte Kryptographie, Hanser 2007
Symmetric Cryptographic Algorithms

- Encryption and decryption using the same key
 - Alternatively: One key can be computed from the other

- Stream algorithms or *stream ciphers*:
 - Operate bit-by-bit (or byte-by-byte)

- Block algorithms or *block ciphers*:
 - Operate on larger groups of bits (blocks)
 - Block size should not be too large - typical 64 bits
Data Encryption Standard DES

- Symmetric block cipher (64 bit blocks)
- Adopted by U.S. government in 1977, based on IBM's *Lucifer* algorithm
 - Designed for hardware realization
- Key length: 56 bits
- Each of the 16 “rounds”:

 64 bit input

 Initial permutation

 Round 1

 ... (continued)

 Round 16

 32-bit swap

 Final permutation

 64 bit output

Encoding and decoding algorithms identical

- f does a number of permutations and substitutions
DES – Example for an Aging Standard

• Brute force attack to DES: 2^{56} permutations to be tried
 – 56 bit keys considered unbreakable in 1977

• Specialized hardware can test DES keys very fast
 – Rumours persist that the NSA (US National Security Agency) can break 56-bit DES in a few minutes time
 – 1997: DES Challenge
 » After 4 months, a DES-encrypted message could be decrypted
 – 2000: DES Challenge III won by “distributed.net” in 22 hours
 » Specialized supercomputer + CPU time from 100.000 PCs in the Internet
 » Key test rate 240 billion keys/second

• Practical workaround: “Triple DES”

• Obstacle for unbreakable codes:
 – U.S. government apparently wants to be able to break the standard encryptions

• Strong cryptographic products are considered weapon technology by the U.S. government!
 – Export restrictions
IDEA

- Xuejia Lai/James Massey (ETH Zürich) 1990
 - Strengthened against “differential cryptoanalysis” in 1992
 - Partially patented by Ascom (Switzerland) until 2011
- Block cipher, working on 64 bit blocks
- Key length 128 bit
- Twice as fast as DES (in particular fast in software)
- Idea: “Mixing operations from different algebraic groups”
 - XOR
 - Addition modulo 2^{16}
 - Multiplication modulo $2^{16}+1$

- Can be considered as quite safe according to current knowledge
Advanced Encryption Standard AES

• U.S. National Institute of Standards and Technology (NIST)
 – 1997: Call for proposals for an unclassified, publicly disclosed symmetric
 encryption algorithm, key sizes 128, 192, and 256 bits
 – 15 submissions, 5 candidates selected
 (MARS, RC6, Rijndael, Serpent, Twofish)
 – 2000: Rijndael declared to be official AES

• Rijndael (Joan Daelen, Vincent Rijmen, Belgium):
 – Between 10 and 14 rounds, depending on key and block length
 – Operations in each round:
 » XOR
 » Byte substitution
 » Row shift (in a grid representation)
 » Mixing of columns based on polynomial (in a grid representation)

• Other common alternative symmetric algorithms: RC4, RC6
 (Rivest Cipher)
6 Cryptographic Techniques – A Brief Introduction

6.1 Introduction to Cryptography
6.2 Symmetric Encryption
6.3 Asymmetric (Public-Key) Encryption
6.4 Digital Signatures
6.5 Public Key Infrastructures

Literature:
Wolfgang Ertel: Angewandte Kryptographie, Hanser 2007
Asymmetric or Public Key Encryption

- Main problem of symmetric cryptography: How to obtain the shared, secret key?
 - Off-line transportation
 - Key distribution architectures, e.g. Kerberos
- Public-key cryptography: Whitfield Diffie, Martin Hellman 1976
 - Each person gets a *private* (secret) key and a *public* key

- Public-Key Cryptosystem:
 Encryption with public key: \[PK(M) = C \]
 Decryption with secret key: \[SK(C) = M \]
 such that \[SK(PK(M)) = M \]
 - By publicly revealing PK, user does not reveal an easy way to compute SK.
- Mathematical background: “Trapdoor one-way function”
 - e.g. prime factorization of large numbers
RSA: Mathematics

• Ronald Rivest, Adi Shamir, Leonard Adleman 1978 (MIT)
• Creating a public/secret key pair:
 – Choose two large primes p and q and compute the “modulus” $n = pq$
 – Randomly choose a number $e < n$, relatively prime to $\phi = (p−1)(q−1)$
 (Euler’s totient function)
 » (n, e) is the public encryption key
 – Compute d as inverse of e (modulo ϕ): i.e. such that $(ed \equiv 1) \mod \phi$
 » (n, d) is the secret decryption key
• Encryption:
 $$C = M^e \mod n$$
• Decryption:
 $$M = C^d \mod n$$

For an example, see e.g. http://www.di-mgt.com.au/rsa_alg.html
RSA: Mathematics – Example

• Creating a public/secret key pair:
 – Choose two (large) primes \(p\) and \(q\) and compute the “modulus” \(n = pq\)
 » \(p = 11, q = 13, n = 143\) (in practice much larger!)
 – Randomly choose a number \(e < n\), relatively prime to \(\phi = (p-1)(q-1) = 120\)
 » E.g. \(e = 23\) (in practice, Fermat primes are used, e.g. 3, 17 and 65537)
 » \((143, 23)\) is the public encryption key
 – Compute \(d\) such that \((ed \equiv 1) \mod \phi\), i.e. \((ed-1) = k \phi\), i.e. \((23 d - 1) = k 120\)
 » Apply extended Euclidian algorithm: \(d = 47, k = 9\)
 » \((143, 47)\) is the secret decryption key

• Encryption:
 \(C = M^e \mod n\), e.g. \(C = 7^{23} \mod 143 = 2\) (Modular arithmetic)

• Decryption:
 \(M = C^d \mod n\), e.g. \(M = 2^{47} \mod 143 = 7\)
RSA: Pragmatics

- Key size is variable, typical 1024 bits
- RSA relies on exponentiation which is computing-intensive
 - DES is at least 100 times as fast as RSA in software
 and 1000 to 10000 times as fast in hardware
- Security of RSA is conjectured to rely on factorization of large numbers
 into primes
- Hybrid usage of symmetric and asymmetric cryptosystems (*enveloping*)
 - Choose a symmetric key (e.g. for AES)
 - Encode the symmetric key with an asymmetric cryptosystem (e.g. RSA) to
 transmit the shared (symmetric) key to the communication partner
 - Combination of advantages:
 » Use asymmetric system for keeping the secrets locally
 » Use symmetric system for mass-data encoding
- RSA is part of many Internet protocols for secure interaction,
 e.g. S/MIME, SSL, TLS, IPsec, ...
6 Cryptographic Techniques –
A Brief Introduction

6.1 Introduction to Cryptography
6.2 Symmetric Encryption
6.3 Asymmetric (Public-Key) Encryption
6.4 Digital Signatures
6.5 Public Key Infrastructures

Literature:
Wolfgang Ertel: Angewandte Kryptographie, Hanser 2007
Digital Signature with Asymmetric Cryptosystems

- Message authentication (digital signature):
 - To establish trust that a message actually originates from a certain sender
 - Must involve full message body, i.e. similar to message encryption
- Some asymmetric cryptosystems allow to use “inverse encryption” for a digital signature, e.g. RSA
 - For such cryptosystems, the inverse equation holds: $PK(SK(M)) = M$
 - Encryption with own secret key
 - Verification possible by anybody knowing the public key
- Example: Alice wants to send a message M to Bob ensuring the message’s integrity and that it is from her
 \[S = M^d \mod n \]
 \((n, d)\) is Alice’s secret key – Equivalent to decryption algorithm
 - Alice sends M and S to Bob
- Bob verifies:
 \[M = S^e \mod n \]
 \((n, e)\) is Alice’s public key – Equivalent to encryption algorithm
- Other digital signature standards exist, e.g. DSS/DSA (Digital Signature Standard/Algorithm by NIST)
Message Digesting or Hashing

- Sometimes not encryption, but integrity of message is the goal
 - Simpler algorithms similar to symmetric encryption
- Hash (or digesting) function for messages
 - Computes short code from long message
 - Difficult to invert (i.e. to obtain message from code)
 - Collision-resistant (i.e. unlikely to find two messages with same hash code)

- Examples of message digesting algorithms:
 - MD5 (Ron Rivest) (128 bit code)
 - Secure Hash Algorithm SHA (NIST) (160 bit code)

- Combination of message digest and signing the digest:
 - Faster way of authenticating a message
6 Cryptographic Techniques – A Brief Introduction

6.1 Introduction to Cryptography
6.2 Symmetric Encryption
6.3 Asymmetric (Public-Key) Encryption
6.4 Digital Signatures

6.5 Public Key Infrastructures

Literature:

Wolfgang Ertel: Angewandte Kryptographie, Hanser 2007
Public Key Infrastructure

• Weak point in public-key cryptosystems
 – Bogus public key associated with a valid identity
 – Attacker can masquerade as another person

• Establishing trust in public keys:
 – Trusted Third Party (TTP)
 » e.g. governmental organisation, financial institution
 – TTP issues a message *(certificate)* that contains
 » User identity
 » Public key
 » Validity period
 » Issuer (TTP identity)
 – TTP “signs” certificate
 » This can be achieved by using the own public key
 » All participants know the signatures (public keys) of TTP, i.e. can trust that the certificates actually come from the issuing TTP
Certification Authorities

• A TTP issuing certificates is a *Certification Authority* (CA)
• CAs are organized in a hierarchy, signature of root CA universally known

The certificates for the public key can be transferred with the message (or put on a website etc.)
E.g. message from Alice to Bob:

```
CA1  PK_{CA1}  Sig_{Root} | Alice  PK_{Alice}  Sig_{CA1} | Message...
```

```
CA2  PK_{CA2}  Sig_{Root} | Bob    PK_{Bob}   Sig_{CA2}  |
```
Digital Signatures and PKI

• The “chain of trust” in a PKI can be reduced to the single fact
 – Everybody knows the public key PK_{Root} of the Root CA
• Root CA signs CAx certificates using its secret key SK_{Root}
 – Everybody can verify the certificates using PK_{Root}
• CAx signs certificates using its secret key SK_{CAx}
 – Everybody can verify the certificate as soon as he has PK_{CAx}
 – ... which he can obtain from a Root-signed certificate

| CA1 | PK_{CA1} | Sig_{Root} | Alice | PK_{Alice} | Sig_{CA1} | Message... |
X.509

- ITU-T X.500 recommendations series
 - Global database representing objects (people and processes)
 - Tree structured
 » Top level = countries
 - Identity of an object is a pathname in the tree: *Distinguished Name (DN)*
 » E.g. “c=GB, o=Universal Exports, cn=James Bond”
 (o: organization, cn: common name)

- ITU-T recommendation X.509
 - Public key certificate data format
 - Linking a public key with an X.500 Distinguished Name (= Identity)
 - Further fields for validity etc.
Web of Trust

- No central certification authority; mutual certification
- Users can define individual level of trust in the owner of a key
- Well-known implementations: PGP and GPG