9 Multimedia Content Production and Management

9.1 Media Asset Management

9.2 Media Production Chains

Literature:

Gregory C. Demetriades: Streaming Media, Wiley 2003

Rosenblatt et al., Chapter 10
Information Progression and Content

- A holistic view according to Demetriades (p. 189) and Virage Inc.
Content Monetization

- There are several traditional models for gaining a return on investment on content
 - Network-based media enable the integration of all models

![Diagram showing content monetization models: Advertising, Syndication, Pay-Per-View, Subscription]
Digital Asset Management

• Very similar acronyms:
 – Digital Asset Management DAM
 – Media Asset Management MAM
 » Rich Media Asset Management RMAM
 – Digital Media Management DMM
• Basic idea:
 – To make the right media material (media assets) available for each specific use, in the right version and the right format
• Integration technology:
 – Workflow integration
 – Integration with various media processing tools
 – Integration with content management and syndication solutions
• Broad range of product offerings
 – From large IT companies (IBM, EMC) to niche vendors
Example: OpenText Artesia DAM

- Digital Asset Management product, see www.opentext.com
- Media ingestion:
 - Various import tools, e.g. hot folders, email
- Media file storage, access and delivery
- Complete workflow coverage:
 - Individual activities of team members
 - Group projects
- Individual view:
 - “Inbox” – What are the tasks I am assigned to, which dates, which assets
- Project view:
 - Participants, status, associated assets, events (milestones, new versions)
- Asset management view:
 - Asset-centric, navigation to various projects
 - History: “where used”, “who used”, “how used”
Asset Management, Rights and Metadata

 - “The defining characteristic of a digital asset is that it is an asset.”
 - “There is general agreement that an asset is the asset’s content plus metadata (or data about the content). Metadata include information about ... rights and permissions ...”
9 Multimedia Content
Production and Management

9.1 Media Asset Management

9.2 Media Production Chains

Literature:

Gregory C. Demetriades: Streaming Media, Wiley 2003

Jürgen Mayer (Hrsg.): streaming media - Internet bewegter, bunter, laut. Markt&Technik 2001

High-Level View of A/V Media Production

- Premeditate
- Capture
- Archive
- Annotate
- Query
- Message Construction
- Organize
- Publish
- Distribute

Lynda Hardman: Canonical Processes of Media Production, CWI Amsterdam, REPORT INS-E0512 SEPTEMBER 2005
Hardware in the Streaming Delivery Chain

A/V Capture

Encoding station(s)
Workstations or automatic servers

Encoding

Storage

Web serving

Serving

Streaming

Possibly many servers with load balancing

Distribution

Content delivery network – possibly many servers

Viewing

Decisions to be taken based on (e.g.)
- expected scale of business
- required reliability

Media archive servers

Serving

Web serving
Organisations in the Streaming Delivery Chain

- A/V Capture
- Content Distribution Service Provider
- Encoding
- Encoding Service Provider
- Storage
- Serving
- Hosting Service Provider
- Streaming
- Distribution
- Internet Service Provider
- Viewing
- Content Distribution Service Provider
Encoding and Transcoding

- Audio and video needs to be converted for streaming delivery
 - Compression, proprietary formats
- Transcoding: Conversion of media files from one format to another
- Repurposing: Using existing content for new purposes
 - e.g. using TV ads as streaming content
Factors Determining Video Bandwidth

- Physical resolution (number of pixels)
 - Determines picture size in standard rendering resolution (e.g. 72 dpi)
 - Dependent on playback device
 » “Set Top Box” for TV set requires full-screen TV signal
 » Video window on PC can be adjusted in size
- Frame rate
 - Desirable: 25 fps
 - Over low-bandwidth links often only smaller rates possible (e.g. 10 fps)
- Color (sub)sampling
- Audio quality
 - Sampling rate, resolution (e.g. speech vs. CD quality)
 - Mono, stereo, multi-channel
- Degree of compression
 - Determines appearance of compression artefacts
Network Limitations

• Bandwidth towards receiver is limited:

• Effective bandwidths for various access network technologies:
 - 28.8 modem: 20 – 23 Kbps
 - 56.6 modem: 32 – 35 Kbps
 - ISDN: 45 – 55 Kbps
 - Dual-ISDN: 80 – 100 Kbps
 - DSL: 1000 Kbps and more
 - VDSL: 25 Mbps and more
 - Cable modem: 4 – 36 Mbps
 - LAN: 10 – 100 Mbps

• Compromise between bandwidth limitations and quality:
 - Picture format
 » E.g. for 28.8 modem picture format 176 x 144 pixel (QCIF)
 » E.g. for DSL picture format 360 x 288 pixel (CIF)
 - Plus other factors
Multiple Bit Rate Encoding

- In general, the same content has to be encoded in several qualities/bit rates
- File allocation:
 - One file multiplexing several qualities, or
 - Several files
- Selection of appropriate quality/bit rate:
 - Dependent on network access technology and dynamic network load
 - Manual selection: Through different alternatives on Web page, or
 - Automatic selection:
 » Using streaming server software and adequate client
 » Often access network type stored in user preferences for client software
 - Adaptive modification (see next chapter)
Example: Multiple Bit Rate Encodings

<table>
<thead>
<tr>
<th></th>
<th>Video source</th>
<th>Broadcast (DVB)</th>
<th>DSL/cable</th>
<th>Modem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target data rate</td>
<td>(270 Mbit/s)</td>
<td>4 Mbit/s</td>
<td>500 kbit/s</td>
<td>35 kbit/s</td>
</tr>
<tr>
<td>Required data reduction</td>
<td>40:1</td>
<td>330:1</td>
<td>4700:1</td>
<td></td>
</tr>
<tr>
<td>Frame size</td>
<td>720 x 480 (CCIR 601)</td>
<td>720 x 480</td>
<td>192 x 144</td>
<td>160 x 120</td>
</tr>
<tr>
<td>Frame rate</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Colour sampling</td>
<td>4:2:2</td>
<td>4:2:0</td>
<td>YUV12</td>
<td>YUV12</td>
</tr>
<tr>
<td>Uncompressed data rate (Mbit/s)</td>
<td>166</td>
<td>124</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>Fraction of original data rate</td>
<td>1:1.33</td>
<td>1:33</td>
<td>1:144</td>
<td></td>
</tr>
<tr>
<td>Required compression</td>
<td>30:1</td>
<td>10:1</td>
<td>30:1</td>
<td></td>
</tr>
</tbody>
</table>

From: D. Austerberry
Combining Media Elements to Compound Media

• Combining video streams, audio streams, text captions, graphics, links to Web locations
 – In space on the screen (e.g. video with banner advertisement)
 – Temporally (e.g. “pre-roll advertisement” with video streams)
• Enhancing interactivity and flexibility
 – E.g. free navigation
 – E.g. language options
• Technological basis:
 – Spatio-temporally structured compound multimedia documents
 – with high degree of interactivity
 – Example technologies:
 » SMIL in RealPlayer
 » MPEG-4
 » Proprietary players e.g. in Flash
Automated Transcoding

• Example 1: Publishing Multiple Formats
 – Broadcaster is creating 8 hours of content per day
 – Repurposing into streaming media for Web-based Video-on-Demand
 – Live capturing, encoding (e.g. MPEG)
 – After program end: transcoding to different bit rates, delivery to streaming server

• Example 2: Flipping on Demand
 – Media archive for a cable channel to be made available through Web
 – Media kept in single, high-quality format
 – On demand (request), files are transcoded, watermarked, streamed

• Example 3: Collaboration Distribution
 – Large company working on marketing materials
 – One rough cut of a new commercial to be distributed to 100 clients with varying quality expectations and platforms
 – *Content distribution service* transcodes according to client requirements

• Example product: Telestream FlipFactory (www.telestream.net)